Dual 4-Bit Binary Ripple Counter

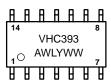
The MC74VHC393 is an advanced high speed CMOS dual 4-bit binary ripple counter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This device consists of two independent 4-bit binary ripple counters with parallel outputs from each counter stage. A $\div 256$ counter can be obtained by cascading the two binary counters.

Internal flip—flops are triggered by high—to—low transitions of the clock input. Reset for the counters is asynchronous and active—high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the VHC393.

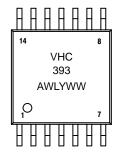
The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

- High Speed: $f_{max} = 170 \text{ MHz}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 0.8 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 236 FETs or 59 Equivalent Gates

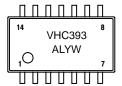

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS



SOIC-14 D SUFFIX CASE 751A



TSSOP-14 DT SUFFIX CASE 948G

A = Assembly Location

L, WL = Wafer Lot Y = Year W, WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC74VHC393D	SOIC-14	55 Units/Rail
MC74VHC393DT	TSSOP-14	96 Units/Rail
MC74VHC393DTR2	TSSOP-14	2500 Units/Reel
MC74VHC393M	SOIC EIAJ-14	50 Units/Rail
MC74VHC393MEL	SOIC EIAJ-14	2000 Units/Reel

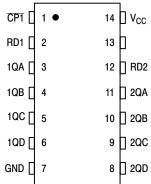


Figure 1. Pin Assignment

3, 11 nQA **BINARY** 4, 10 nQB COUNTER <u>CPn</u> __1, 13 5, 9 nQC 6, 8 nQD

Figure 2. Logic Diagram

2, 12

RDn

FUNCTION TABLE

Inp	uts	
Clock	Outputs	
Χ	Н	L
Н	L	No Change
L	L	No Change
↑	L	No Change
\rightarrow	L	Next State

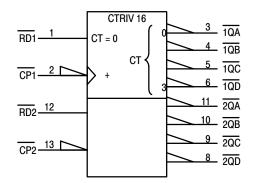


Figure 3. IEC Logic Symbol

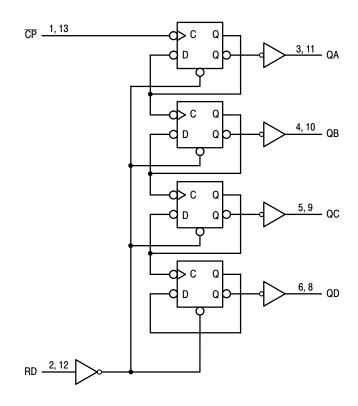


Figure 4. Expanded Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	r	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to + 7.0	V
V _{IN}	DC Input Voltage		-0.5 to + 7.0	V
V _{OUT}	DC Output Voltage		-0.5 to V_{CC} + 0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{OK}	Output Diode Current		±20	mA
I _{OUT}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GI	ND Pins	±75	mA
P _D	Power Dissipation in Still Air,	SOIC Packages† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature		-65 to + 150	°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $ V_{CC} = 3.3 \text{ V} $ $ V_{CC} = 5.0 \text{ V} $	0 0	100 20	ns/V

The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

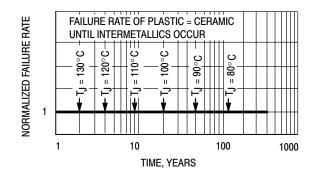


Figure 5. Failure Rate vs. Time Junction Temperature

[†]Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	Т	A = 25°	°C	T _A = 5	≤ 85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Maximum Low–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 4 mA I _{OL} = 8 mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	1
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			± 0.1		± 1.0		±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			4.0		40.0		40.0	μΑ

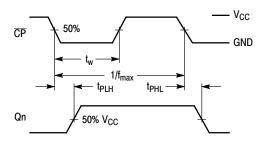
AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)

			T _A = 25°C		T _A = 5	≤ 85°C		= ≤ 5°C		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		120 65		65 35		65 35		MHz
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		170 115		105 75		105 75		=
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CP to QA	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		8.6 11.1	13.2 16.7	1.0 1.0	15.5 19.0	1.0 1.0	15.5 19.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		5.8 7.3	8.5 10.5	1.0 1.0	10.0 12.0	1.0 1.0	10.0 12.0	=
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CP to QB	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		10.2 12.7	15.8 19.3	1.0 1.0	18.5 22.0	1.0 1.0	18.5 22.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		6.8 8.3	9.8 11.8	1.0 1.0	11.5 13.5	1.0 1.0	11.5 13.5	=
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CP to QC	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		11.7 14.2	18.0 21.5	1.0 1.0	21.0 24.5	1.0 1.0	21.0 24.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		7.7 9.2	11.2 13.2	1.0 1.0	13.0 15.0	1.0 1.0	13.0 15.0	=
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CP to QD	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		13.0 15.5	19.7 23.2	1.0 1.0	23.0 26.5	1.0 1.0	23.0 26.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		8.5 10.0	12.5 14.5	1.0 1.0	14.5 16.5	1.0 1.0	14.5 16.5	
t _{PHL}	Maximum Propagation Delay, RD to QN	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		7.9 10.4	12.3 15.8	1.0 1.0	14.5 18.0	1.0 1.0	14.5 18.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ p}$ $C_L = 50 \text{ p}$		5.4 6.9	8.1 10.1	1.0 1.0	9.5 11.5	1.0 1.0	9.5 11.5	ns

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ns}$)

			T _A = 25°C		T _A = ≤	≤ 85°C	T _A 125	= ≤ 5°C		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{OSLH} , t _{OSHL}	Output to Output Skew	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 1)			1.5		1.5		1.5	pF
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 1)			1.0		1.0		1.0	pF
C _{IN}	Maximum Input Capacitance			4.0	10		10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_PD	Power Dissipation Capacitance (Note 2)	23	pF


NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Parameter	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.5	0.8	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.5	-0.8	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		3.5	V
V_{ILD}	Maximum Low Level Dynamic Input Voltage		1.5	V

TIMING REQUIREMENTS (Input $t_r = t_f = 3.0 \text{ns}$)

			TA	= 25°C	T _A = ≤ 85°C	T _A = ≤ 125°C	
Symbol	Parameter	Test Conditions	Тур	Limit	Limit	Limit	Unit
t _w	Minimum Pulse Width, CP	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		5.0 5.0	5.0 5.0	5.0 5.0	ns
t _w	Minimum Pulse Width, RD	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		5.0 5.0	5.0 5.0	5.0 5.0	ns
t _{rec}	Minimum Recovery Time, RD to CP	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		5.0 4.0	5.0 4.0	5.0 4.0	ns
t _r , t _f	Minimum Input Rise and Fall Times	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		330 100	330 100	330 100	ns

Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.
 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: |c_{C(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

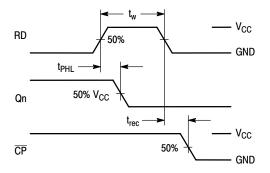
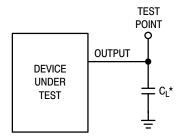
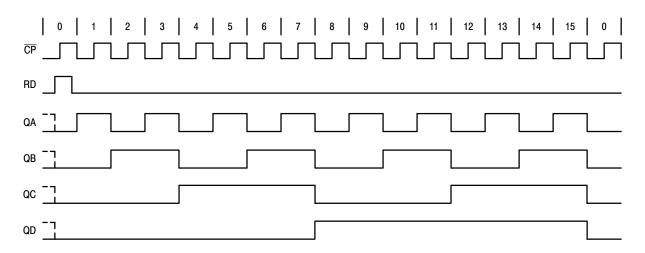
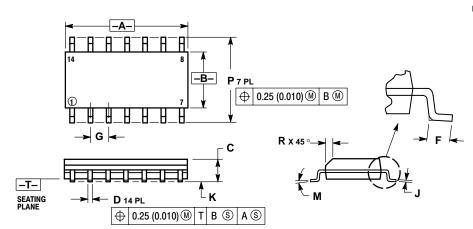



Figure 6. Switching Waveforms

*Includes all probe and jig capacitance

Figure 7. Test Circuit



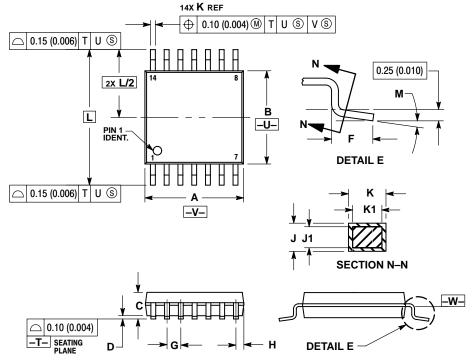

Figure 8. Timing Diagram

COUNT SEQUENCE

	Outputs							
Count	QD	QC	QB	QA				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
3	L	L	Н	Н				
4	L	Н	L	L				
5	L	Н	L	Н				
6	L	Н	Н	L				
7	L	Н	Н	Н				
8	Н	L	L	L				
9	Н	L	L	Н				
10	Н	L	Н	L				
11	Н	L	Н	Н				
12	Н	Н	L	L				
13	Н	Н	L	Н				
14	Н	Н	Н	L				
15	Н	Η	I	Н				

PACKAGE DIMENSIONS

D SUFFIX SOIC-14 CASE 751A-03 **ISSUE F**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 BSC		0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.228	0.244	
R	0.25	0.50	0.010	0.019	

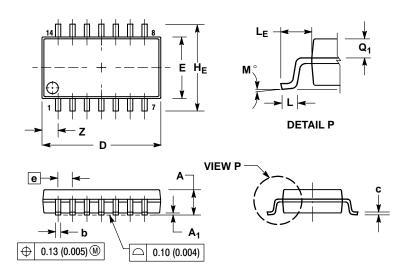
PACKAGE DIMENSIONS

DT SUFFIX TSSOP CASE 948G-01 **ISSUE 0**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.019) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
- 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.


 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETEDO	INCHES	
	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

PACKAGE DIMENSIONS

M SUFFIX SO-14 **CASE 965-01 ISSUE 0**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) DED SIDE
- PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
 PER SIDE.
 1 TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD
 TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
0.50	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10 °
Q_1	0.70	0.90	0.028	0.035
Z		1.42		0.056

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.