SN74LVCH16241A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS348E - MARCH 1994 - REVISED JUNE 1998

- Member of the Texas Instruments Widebus™ Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

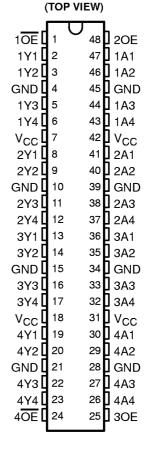
The SN74LVCH16241A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

This device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer, and provides true outputs and complementary output-enable (OE and \overline{OE}) inputs.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

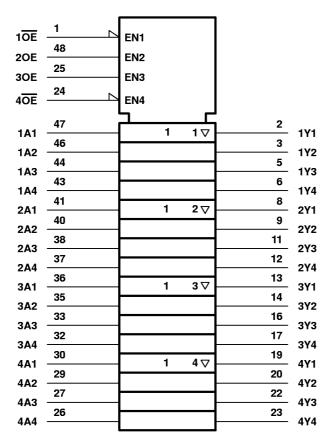
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN74LVCH16241A is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

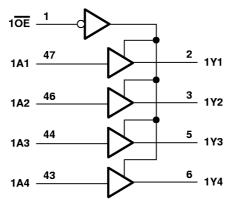
TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

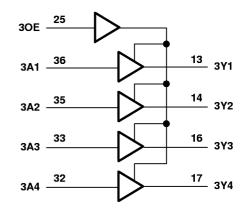

DGG OR DL PACKAGE

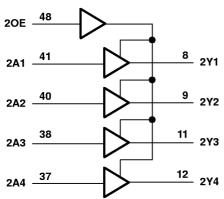
FUNCTION TABLES

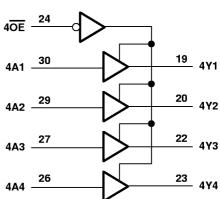
INPU'	OUTPUTS	
10E, 40E	1A, 4A	1Y, 4Y
L	Н	Н
L	L	L
Н	X	Z

INPU	OUTPUTS	
20E, 30E	2A, 3A	2Y, 3Y
Н	Н	Н
Н	L	L
L	Х	Z


logic symbolt




 $[\]dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I	
Voltage range applied to any output in the high-impedance or pow	er-off state, V _O
(see Note 1)	
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package .	89°C/W
DL package	94°C/W
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SN74LVCH16241A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS348E - MARCH 1994 - REVISED JUNE 1998

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage Op	Operating	1.65	3.6	V
	Supply Voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
v_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		٧
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	1.5 0.65 × V _{CC} 1.7 2 0.35 × V _{CC} 0.7 0.8 0 5.5 0 V _{CC} 0 5.5 -4 -8 -12 -24 4 8 12		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.7 0.8 0 5.5	٧	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
٧ _I	Input voltage		0	5.5	٧
.,	Output voltage High or low s 3 state	High or low state	0	VCC	V
V O		3 state	0	5.5	
		V _{CC} = 1.65 V		-4	
la	High-level output current	V _{CC} = 2.3 V		-8	mA
ІОН	riigii-level output current	$V_{CC} = 2.7 \text{ V}$		-12	IIIA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
loL	Low-level output current	V _{CC} = 2.3 V		8	mA
	Low-level output current	$V_{CC} = 2.7 \text{ V}$		12	mA
	V _{CC} = 3 V			24	
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		vcc	MIN	TYP	MAX	UNIT	
	$I_{OH} = -100 \mu\text{A}$		1.65 V to 3.6 V	V _{CC} -0.2				
	I _{OH} = -4 mA	1.65 V	1.2					
V	I _{OH} = -8 mA		2.3 V	1.7			V	
VOH	I _{OH} = -12 mA		2.7 V	2.2			·	
	10H = -12 111A		3 V	2.4				
	I _{OH} = -24 mA		3 V	2.2				
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
	I _{OL} = 4 mA		1.65 V			0.45		
V _{OL}	I _{OL} = 8 mA		2.3 V			0.7	V	
	I _{OL} = 12 mA		2.7 V			0.4		
	I _{OL} = 24 mA		3 V			0.55		
lj	V _I = 0 to 5.5 V		3.6 V			±5	μΑ	
	V _I = 0.58 V		1.65 V					
	V _I = 1.07 V		1.05 V				μA	
	$V_1 = 0.7 \text{ V}$		2.3 V	45				
l _{l(hold)}	V _I = 1.7 V			– 45				
	V _I = 0.8 V		3 V	75				
	V _I = 2 V		3 V					
	$V_1 = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500		
l _{off}	V_I or $V_O = 5.5 V$		0			±10	μΑ	
loz	V _O = 0 to 5.5 V		3.6 V			±10	μΑ	
1	V _I = V _{CC} or GND	1- 0	2 224			20		
lcc	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}$	l _O = 0	3.6 V			20	μ Α	
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND		2.7 V to 3.6 V			500	μΑ	
Ci	V _I = V _{CC} or GND		3.3 V		_		pF	
Co	$V_O = V_{CC}$ or GND		3.3 V				pF	

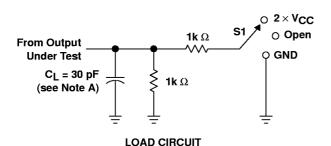
 $[\]uparrow$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

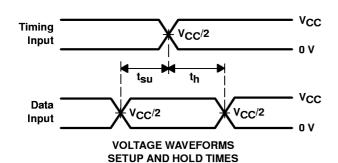
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = ± 0.3	3.3 V 3 V	UNIT
	(IIAFO1)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	Α	Υ									ns
t _{en}	OE or OE	Υ									ns
^t dis	OE or OE	Υ									ns

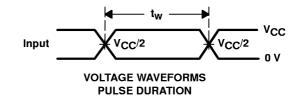
[‡] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

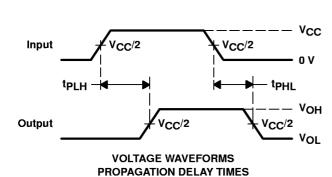
[§] This applies in the disabled state only.

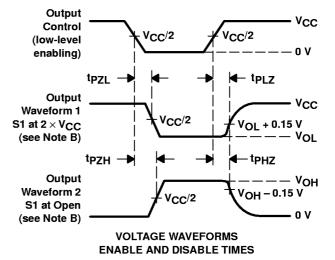

SN74LVCH16241A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS348E – MARCH 1994 – REVISED JUNE 1998

operating characteristics, $T_A = 25^{\circ}C$

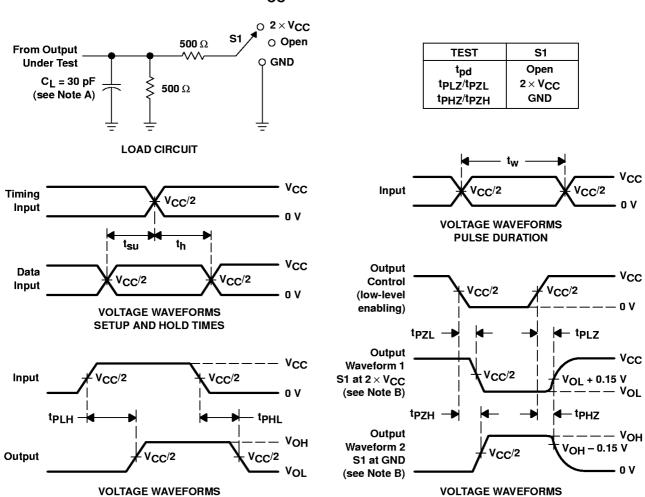

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT		
			CONDITIONS	TYP	TYP	TYP		
	Power dissipation capacitance	Outputs enabled	f = 10 MHz				pF	
C _{pd}	per buffer/driver	Outputs disabled	1 = 10 WIHZ				pΓ	




PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$



TEST	S1
^t pd	Open
tPLZ/tPZL	2×V _{CC}
^t PHZ ^{/t} PZH	Open


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzl and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

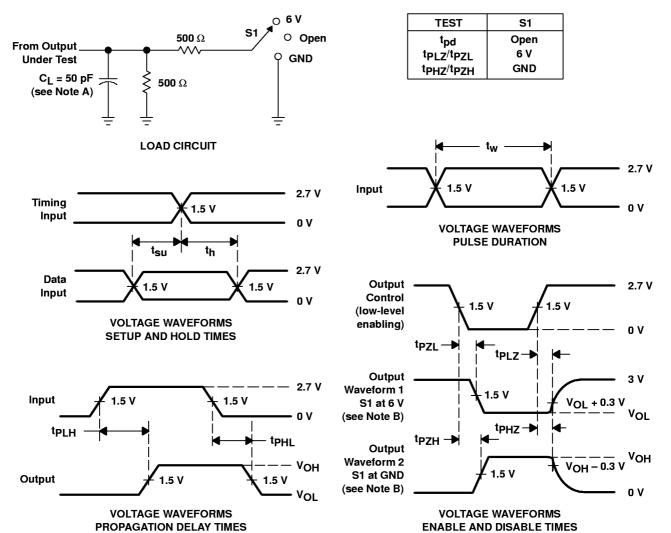
 V_{CC} = 2.5 V \pm 0.2 V

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

ENABLE AND DISABLE TIMES

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis-


PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten-
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.7 \text{ V}$ AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms