Octal Buffer/Line Driver with 3-State Outputs

The MC74AC240/74ACT240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

Features

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- 'ACT240 Has TTL Compatible Inputs
- These are Pb–Free Devices

TRUTH TABLE

Inputs		Outputs
\overline{OE}_1	D	(Pins 12, 14, 16, 18)
L	L	Н
L	н	L
Н	Х	Z

NOTE: H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

TRUTH TABLE

Inputs		Outputs
OE ₂ D		(Pins 3, 5, 7, 9)
L	L	Н
L	н	L
Н	Х	Z

NOTE: H = HIGH Voltage Level L = LOW Voltage Level

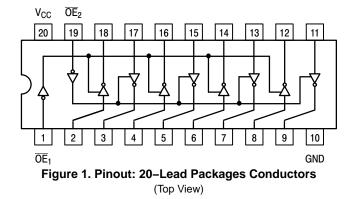
X = Immaterial

Z = High Impedance

ON Semiconductor®

www.onsemi.com

SOIC-20W DW SUFFIX CASE 751D


TSSOP-20 DT SUFFIX CASE 948E

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

© Semiconductor Components Industries, LLC, 2015 February, 2015 – Rev. 9

MAXIMUM RATINGS

Symbol	Paran	neter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)		–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	(Note 1)	–0.5 to V _{CC} +0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
I _{OUT}	DC Output Sink/Source Current	±50	mA	
I _{CC}	DC Supply Current, per Output Pin		±50	mA
I _{GND}	DC Ground Current, per Output Pin		±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C	
ΤL	Lead temperature, 1 mm from Case for 10) Seconds	260	°C
ΤJ	Junction Temperature Under Bias		140	°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	65.8 110.7	°C/W
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{Latchup}	Latchup Performance Abo	ve V _{CC} and Below GND at 85° C (Note 6)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

I₀ absolute maximum rating must be observed.
 The package thermal impedance is calculated in accordance with JESD 51–7.
 Tested to EIA/JESD22–A114–A.

4. Tested to EIA/JESD22-A115-A.

Tested to JESD22-C101-A. 5.

6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Мах	Unit	
M		′AC	2.0	5.0	6.0	N/
V _{CC}	Supply Voltage	Ϋ́ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)	0	-	V _{CC}	V	
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 7) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 8)	V _{CC} @ 4.5 V	-	10	-	
t _r , t _f	'ACT Devices except Schmitt Inputs V _{CC}		-	8.0	-	ns/V
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High			-	-24	mA
I _{OL}	Output Current – Low			_	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

7. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 8. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC			
Symbol	Parameter	V _{CC}			T _A =–40°C to +85°C	Unit	Conditions	
		(V)			1			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA	
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}, GND$	
I _{OZ}	Maximum 3–State Current	5.5	_	±0.5	±5.0	μΑ	$V_{I} (OE) = V_{IL}, V_{IH}$ $V_{I} = V_{CC}, GND$ $V_{O} = V_{CC}, GND$	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	OLD 11	
I _{OHD}	Output Current	5.5	_	-	-75	mA		
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND	

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

Symbol			74AC V_{CC}^* $T_A = +25^{\circ}C$ (V) $C_L = 50 \text{ pF}$			74	AC		
	Parameter					$T_{A} = -40^{\circ}C$ to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay Data to Output	3.3 5.0	1.5 1.5	6.0 4.5	8.0 6.5	1.0 1.0	9.0 7.0	ns	3–5
t _{PHL}	Propagation Delay Data to Output	3.3 5.0	1.5 1.5	5.5 4.5	8.0 6.0	1.0 1.0	8.5 6.5	ns	3–5
t _{PZH}	Output Enable Time	3.3 5.0	1.5 1.5	6.0 5.0	10.5 7.0	1.0 1.0	11.0 8.0	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	1.5 1.5	7.0 5.5	10.0 8.0	1.0 1.0	11.0 8.5	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	1.5 1.5	7.0 6.5	10.0 9.0	1.0 1.0	10.5 9.5	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	1.5 1.5	7.5 6.5	10.5 9.0	1.0 1.0	11.5 9.5	ns	3–8

AC CHARACTERISTICS (For Figures and Waveforms - See AND8277/D at www.onsemi.com)

 * Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

	Parameter		74/	АСТ	74ACT			
Symbol		V _{CC} (V)	T _A = +25°C		T _A = −40°C to +85°C	Unit	Conditions	
		(•)	Тур	Gu	aranteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5		3.86 4.86	3.76 4.76	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} -24 \text{ mA}$ -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	l _{OUT} = 50 μA	
		4.5 5.5		0.36 0.36	0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$	
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$	
I _{OZ}	Maximum 3–State Current	5.5	-	±0.5	±5.0	μΑ	$V_{I} (OE) = V_{IL}, V_{IH}$ $V_{I} = V_{CC}, GND$ $V_{O} = V_{CC}, GND$	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min	
Icc	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND	

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

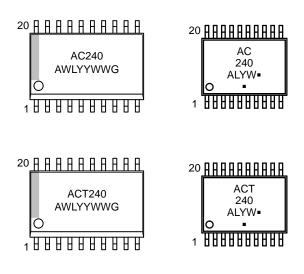
			74ACT			74ACT			
Symbol	Parameter		T _A = +25°C C _L = 50 pF			T _A = −40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay Data to Output	5.0	1.5	6.0	8.5	1.5	9.5	ns	3–5
t _{PHL}	Propagation Delay Data to Output	5.0	1.5	5.5	7.5	1.5	8.5	ns	3–5
t _{PZH}	Output Enable Time	5.0	1.5	7.0	8.5	1.0	9.5	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	7.0	9.5	1.5	10.5	ns	3–8
t _{PHZ}	Output Disable Time	5.0	2.0	8.0	9.5	2.0	10.5	ns	3–7
t _{PLZ}	Output Disable Time	5.0	2.5	6.5	10.0	2.0	10.5	ns	3–8

*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0 V$
C _{PD}	Power Dissipation Capacitance	45	pF	V _{CC} = 5.0 V

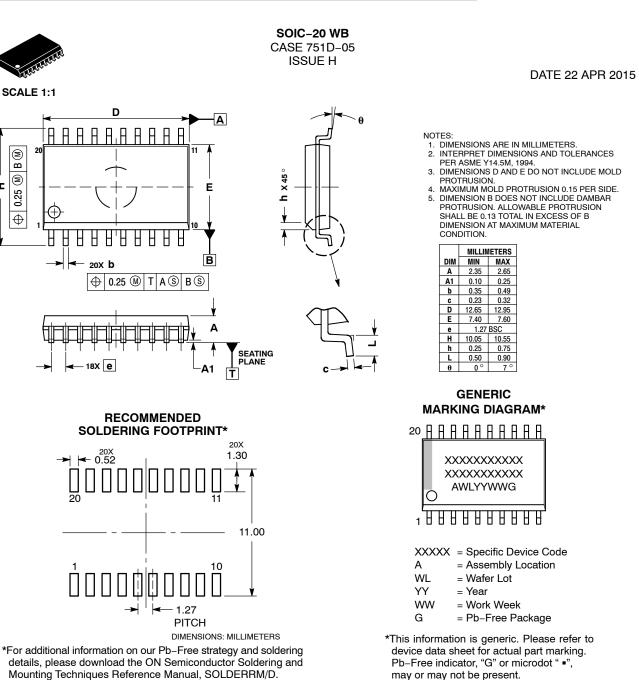
ORDERING INFORMATION


Device	Package	Shipping [†]
MC74AC240DWG		38 Units / Rail
MC74AC240DWR2G	SOIC-20	1000 / Tape & Reel
MC74ACT240DWG	(Pb-Free)	38 Units / Rail
MC74ACT240DWR2G		1000 / Tape & Reel
MC74AC240DTR2G	TSSOP-20	2500 / Tape & Reel
MC74ACT240DTR2G	(Pb-Free)	2500 / Tape & Reel

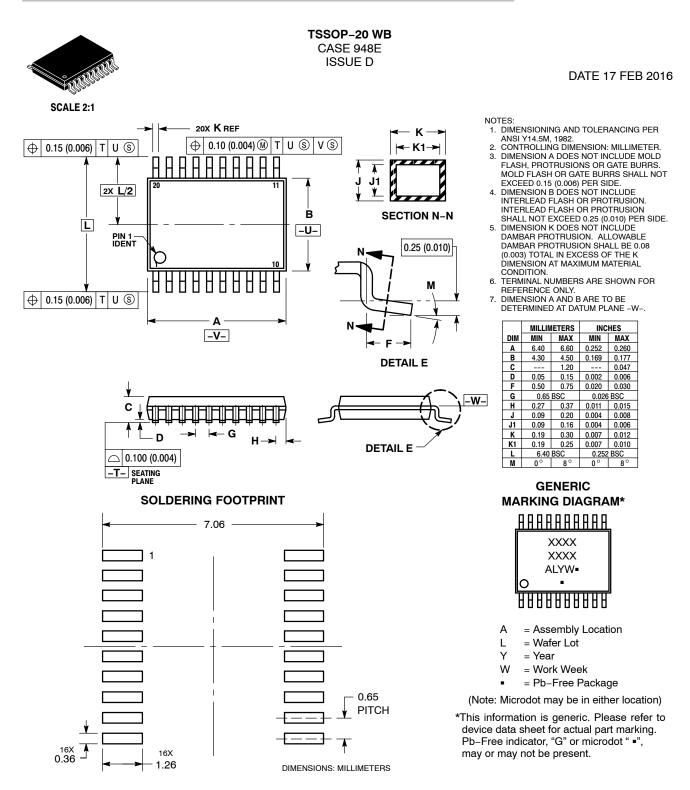
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

SOIC-20W


TSSOP-20

А	= Assembly Location					
WL, L	= Wafer Lot					
YY, Y	= Year					
WW, W	= Work Week					
G or ■	= Pb-Free Package					
(Note: Microdot may be in either location)						


т

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-20 WB	PAGE 1 OF 1					
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the							

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative