NVT4557

SIM card interface level translator with EMI filter and ESD protection

Rev. 2.0 — 15 September 2021

Product data sheet

1 General description

The NVT4557 device is built for interfacing a SIM card with a single low-voltage 1.08 V to 1.95 V host side interface. The NVT4557 contains three 1.65 V to 3.6 V level translators to convert the data, RSTn and CLKn signals between a SIM card and a host microcontroller.

The NVT4557 is compliant with all ETSI, IMT-2000 and ISO-7816 SIM/Smart card interface requirements.

2 Features and benefits

- Supports clock speed up to 10 MHz clock
- Compliant with all ETSI, IMT-2000 and ISO-7816 SIM/Smart card interface requirements
- Support SIM card supply voltages with range of 1.65 V to 3.6 V
- Host microcontroller operating voltage range: 1.08 V to 1.95 V
- Automatic level translation of I/O, RSTn and CLKn between SIM card and host side interface with capacitance isolation
- Incorporates shutdown feature for the SIM card signals according to ISO-7816-3
- Automatic enable and disable through V_{CCB}
- · Integrated pull-up and pull-down resistors: no external resistors required
- · Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on V_{CCB} or any of the card side pins. External ESD diodes are not required.
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- Pb-free, Restriction of Hazardous Substances (RoHS) compliant and free of halogen and antimony (Dark Green compliant)
- Available in 9-pin WLCSP package in 0.3 mm pitch and 10-pin XQFN10 package with 0.4 mm pitch

3 Applications

- NVT4557 can be used with a range of SIM card attached devices including:
 - Mobile and personal phones
 - Wireless modems
 - SIM card terminals

SIM card interface level translator with EMI filter and ESD protection

Ordering information

Table 1. Ordering information

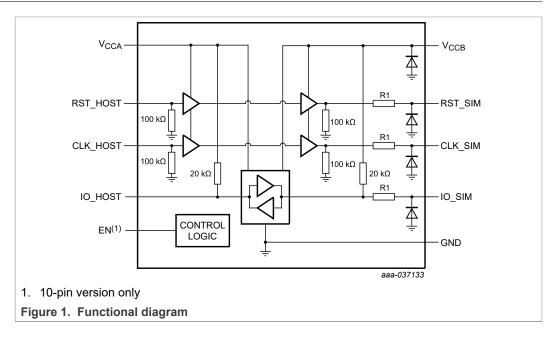
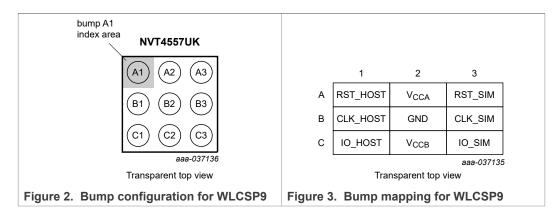
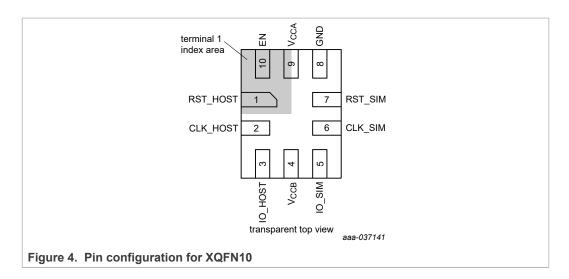

Type number	Topside	Package		
	mark	Name	Description	Version
NVT4557UK	557	WLCSP9	wafer level CSP package; 9 bumps (3 x 3); body 0.92 mm × 0.92 mm × 0.525 mm with 0.3 mm pitch	SOT2042-2
NVT4557HK	57	XQFN10	plastic, extremely thin quad flat package; no leads; 10 terminals; body 1.40 x 1.80 x 0.50 mm	SOT1160-1

Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
NVT4557UK	NVT4557UKJ	WLCSP9	Reel 13" Q1/T1 [1]	20000	T_{amb} = -40 °C to +85 °C
NVT4557HK	NVT4557HKX	XQFN10	Reel 7" Q1/T1 [2]	4000	T _{amb} = -40 °C to +85 °C


Find packing information - www.nxp.com/docs/en/packing/SOT2042-2_118.pdf
Find packing information - www.nxp.com/docs/en/packing/SOT1160-1_115.pdf


Functional diagram 5

SIM card interface level translator with EMI filter and ESD protection

6 Pinning information

6.1 Pin description

Table 3. Pin description

Table 3. Pin c				
Symbol	Pinning for WLCSP9	Pinning for XQFN10	Туре	Description
RST_HOST	A1	1	I	Reset input from host controller.
V _{CCA}	A2	9	supply	Supply voltage for the host controller side input/output pins (CLK_HOST, RST_HOST, IO_HOST). This pin should be bypassed with a 0.1 µF ceramic capacitor close to the pin.
RST_SIM	A3	7	0	Reset output pin for the SIM card.
CLK_HOST	B1	2	I	Clock input from host controller.
GND	B2	8	ground	Ground for the SIM card and host controller. Proper grounding and bypassing are required to meet ESD specifications.
CLK_SIM	В3	6	0	Clock output pin for the SIM card.
IO_HOST	C1	3	I/O	Host controller bidirectional data input/output. The host output must be on an open-drain driver.

NVT4557

SIM card interface level translator with EMI filter and ESD protection

Table 3. Pin description...continued

Symbol	Pinning for WLCSP9	Pinning for XQFN10	Туре	Description
V _{CCB}	C2	4	supply	SIM card supply voltage. When V_{CCB} is below the $V_{CCBdisable}$, the device is disabled. This pin should be bypassed with a 0.1 μF ceramic capacitor close to the pin.
IO_SIM	C3	5	I/O	SIM card bidirectional data input/output. The SIM card output must be on an open-drain driver.
EN	-	10	I	Host controller driven enable pin. This pin should be HIGH (V _{CCA}) for normal operation, and LOW to help avoid race conditions specifically during the shutdown sequence.

7 Functional description

Table 4. Function table

Supply Voltage		Input	Input/Out		Operational Mode	
V _{CCA}	V _{CCB}	EN [1] [2]	Host	SIM Card		
1.08 V to 1.95 V	1.65 V to 3.6 V	Н	HOST = SIM Card SIM Card = HOST		Active	
1.08 V to 1.95 V	1.65 V to 3.6 V	L	See Table 5, Condition B		Shutdown Mode	
GND	1.65 V to 3.6 V	X	See <u>Table 5</u> , Condit	ion B	Shutdown Mode	
1.08 V to 1.95 V	GND	X	See Table 5, Condition A		Shutdown Mode	
GND	GND	X	See <u>Table 5</u> , Condition A		Shutdown Mode	

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

Table 5. Pin condition

idalo di Tili dollation							
Pin condition	Condition A	Condition B					
RST_HOST	100 kΩ pull low	100 kΩ pull low					
CLK_HOST	100 kΩ pull low	100 kΩ pull low					
IO_HOST	20 kΩ pull to V_{CCA}	20 kΩ pull to V_{CCA}					
RST_SIM	100 kΩ pull low	400 Ω pull low					
CLK_SIM	100 kΩ pull low	400 Ω pull low					
IO_SIM	High Z	400 Ω pull low					

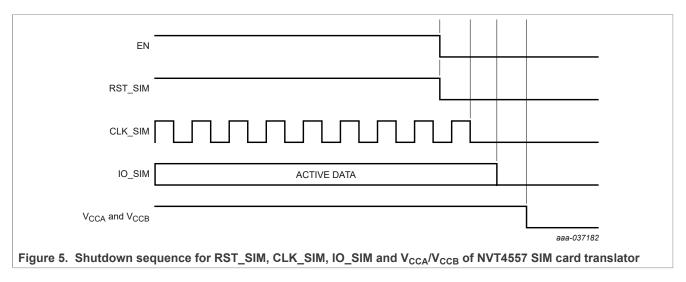
Refer to Figure 1.

7.1 Shutdown sequence of NVT4557 (10-pin version only)

The ISO 7816-3 specification specifies the shutdown sequence for the SIM card signals to ensure that the card is properly disabled for power savings. Also during hot swap, the orderly shutdown of these signals helps to avoid any improper write and corruption of data.

When the enable, EN, is asserted LOW, the shutdown sequence is initiated by powering down the RST_SIM channel. Once the RST_SIM channel is powered down, CLK_SIM

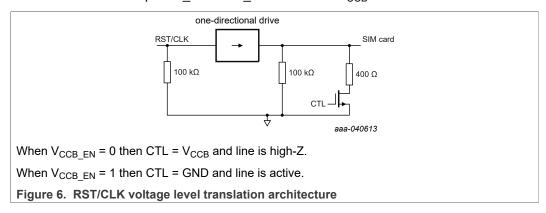
NVT4557

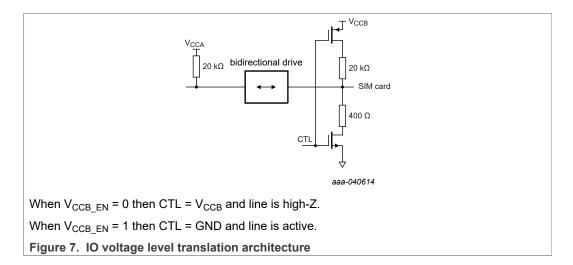

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

^[2] V_{IL} and V_{IH} are referenced to V_{CCA} . The EN can be controlled by an external device limit of V_{CCA} + 0.3 V.

SIM card interface level translator with EMI filter and ESD protection


and IO_SIM are powered down sequentially one-by-one. An internal pull-down resistor on the SIM pins is used to pull these channels LOW. The shutdown sequence is completed in a few microseconds. It is important that EN is pulled LOW before V_{CCA} and V_{CCB} supplies go LOW to ensure that the shutdown sequence is properly initiated.


7.2 Embedded Enable - 9 pin and 10 pin if Enable is tied to V_{CCA}

The device contains an auto-enable feature. If V_{CCB} rises above V_{CCB_EN} , the level translator logic is enabled automatically. As soon as V_{CCB} drops below the V_{CCB_DIS} , the SIM card side drivers and the level translator logic is disabled. Host side IO pin is configured as input with a 20 k Ω resistor pulled up to V_{CCA} .

When the V_{CCB} drops below V_{CCB} disable voltage but is still higher than a MOS threshold (e.g., 0.8 V) the pulldown NMOS in the one-directional drive will be off and NMOS controlled by CTL will be on, and the 400 Ω resistor will keep the card side CLK/RST/ IO low. Additionally the CLK/RST pins on both the Host and Card side have a 100 k Ω pull down resistor. The 400 Ω resistor is used for discharge at power off and the 100 k Ω resister is used for keep RST_SIM/CLK_SIM low when V_{CCB} below vth.

SIM card interface level translator with EMI filter and ESD protection

7.3 EMI filter

All input/output driver stages are equipped with EMI filters to reduce interferences towards sensitive mobile communication.

7.4 ESD protection

The device has robust ESD protections on all SIM card pins as well as on the V_{CCB} pin. The architecture prevents any stress for the host: the voltage translator discharges any stress to supply ground.

8 Limiting values

Table 6. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCA}	host supply voltage		GND - 0.5	2.4	V
V _{CCB}	SIM supply voltage		GND - 0.5	4.0	V
V _{I(CLK_HOST)}	input voltage on pin CLK_HOST	input signal voltage, HOST side	GND - 0.5	V _{CCA} + 0.3	V
V _{I(RST_HOST)}	input voltage on pin RST_HOST	input signal voltage, HOST side	GND - 0.5	V _{CCA} + 0.3	V
V _{I(IO_HOST)}	input voltage on pin IO_HOST	input signal voltage, HOST side	GND - 0.5	V _{CCA} + 0.3	V
V _{I(CLK_SIM)}	input voltage on pin CLK_SIM	input signal voltage, SIM side	GND - 0.5	V _{CCB} + 0.3	V
V _{I(RST_SIM)}	input voltage on pin RST_SIM	input signal voltage, SIM side	GND - 0.5	V _{CCB} + 0.3	V
V _{I(IO_SIM)}	input voltage on pin IO_SIM	input signal voltage, SIM side	GND - 0.5	V _{CCB} + 0.3	V
T _{stg}	storage temperature		-55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C

NVT4557

SIM card interface level translator with EMI filter and ESD protection

Table 6. Limiting values...continued

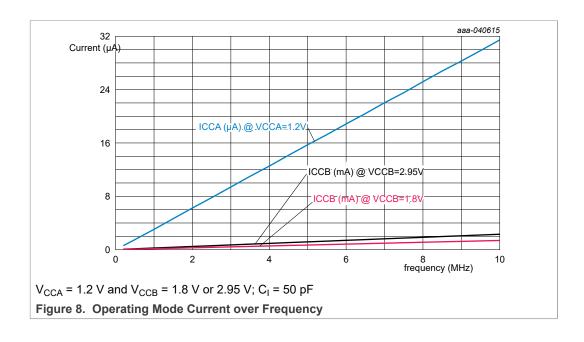
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{ESD} electrostatic dischavoltage	electrostatic discharge voltage	IEC 61000-4-2, level 4, all memory card-side pins, V _{CCB} and GND	[1]			
		contact discharge		-8	+8	kV
		air discharge	[2]	-15	+15	kV
		Human Body Model (HBM) JEDEC JESD22-A114F; all pins		-2000	+2000	V
		Charge Device Model (CDM) JEDEC JESD22-C101E; all pins		-500	+500	V
I _{lu(IO)}	input/output latch-up current	JESD 78B: $-0.5 \times V_{CC} < V_I < 1.5 \times V_{CC}$; T _j < 125 °C		-100	+100	mA

All system level tests are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY}, V_{LDO} and V_{CCA}. The IEC 61000-4-2 standards are defined so that each level is considered equivalent – a Level 4 contact discharge of 8 kV is considered equivalent to a 15 kV air discharge. Air discharge is provided for information only and was not tested. Per IEC61000-4-2: Contact discharge is the preferred test method, air discharges shall be used where contact discharge cannot be applied. Please refer to AN10897: A guide to designing for ESD and EMC and AN11267: EMC and system level ESD design guidelines for LCD drivers for more information on ESD testing and ESD design techniques.

SIM card interface level translator with EMI filter and ESD protection

9 Characteristics


Table 7. Supplies

 $1.65~V \le V_{CCB} \le 3.6~V$; $1.08~V \le V_{CCA} \le 1.95~V$; $T_{amb} = -40~^{\circ}C$ to $+85~^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ ^[1]	Max	Unit
V _{CCA}	supply voltage			1.08	-	1.95	V
ICCA	supply current	operating mode; $f_{CLK_HOST} = 1 \text{ MHz}$, EN = V_{CCA}		-	5	10	μА
		Quiescent current; EN = V _{CCA} , IO_HOST and CLK_HOST = GND		-	0.01	1	μA
		shutdown mode; EN = GND		-	-	1	μA
V _{CCB}	SIM supply voltage			1.65	-	3.6	V
I _{CCB}	SIM supply current	operating mode; $f_{CLK_HOST} = 1$ MHz, EN = V_{CCA} , $C_I = 50$ pF		-	20	30	μΑ
		Quiescent current; EN = V _{CCA} , IO_HOST and CLK_HOST = GND		-	3.7	4.2	μΑ
		shutdown mode; EN = GND		-	-	1	μA
Vı	input voltage	host side	[2]	-0.3	-	V _{CCA} + 0.3	V
		sim card side		-0.3	-	V _{CCB} + 0.3	V

^[1] Typical values measured at 25 °C.

^[2] The voltage must not exceed 1.95 V steady state.

SIM card interface level translator with EMI filter and ESD protection

Table 8. Static characteristics

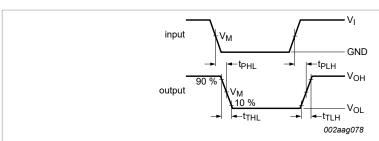
 $1.65~V \le V_{CCB} \le 3.6~V$; $1.08~V \le V_{CCA} \le 1.95~V$; $T_{amb} = -40~^{\circ}C$ to $+85~^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ ^[1]	Max	Unit
Automatic	enable feature: V _{CCB}						
V _{CCB_EN}	device enable voltage level	V _{CCA} ≥ 1.0 V, V _{CCB} rising edge		1.65	-	-	V
V _{CCB_DIS}	device disable voltage level	V _{CCA} ≥ 1.0 V, V _{CCB} falling edge		-	-	1.40	V
ΔV_{CCBen}	V _{CCBen} hysteresis voltage			-	132	-	mV
Hardware	enable pin				1		
V _{IH}	HIGH-level input	EN pin threshold					
	voltage	1.08 V ≤ V _{CCA} < 1.95 V		0.7 × V _{CCA}	-	-	V
V _{IL}	LOW-level input voltage	EN pin threshold		-	-	0.3 × V _{CCA}	V
Level shift	er				-		
V _{IH}	HIGH-level input	IO_HOST, RST_HOST, CLK_HOST					_
	voltage	1.08 V ≤ V _{CCA} < 1.95 V	[2]	0.7 × V _{CCA}	-	-	V
		IO_SIM	[2]	0.7 × V _{CCB}	-	-	V
V _{IL}	LOW-level input	IO_HOST, RST_HOST, CLK_HOST	[2]	-	-	0.3 × V _{CCA}	V
	voltage	IO_SIM	[2]	-	-	0.3 × V _{CCB}	V
R _{PU}	pull-up resistance	IO_SIM connected to V _{CCB}	[3]	14	20	26	kΩ
		IO_HOST connected to V _{CCA}	[3]	14	20	26	kΩ
V _{OH}	HIGH-level output	RST_SIM, CLK_SIM; I _{OH} = -1 mA	[2]	0.75 × V _{CCB}	-	V _{CCB}	V
	voltage	IO_SIM; I _{OH} = -10 μA	[2]	0.75 × V _{CCB}	-	V _{CCB}	V
		IO_HOST; I _{OH} = -10 μA	[2]	0.75 × V _{CCA}	-	V _{CCA}	V
V _{OL}	LOW-level output	RST_SIM, CLK_SIM; I _{OL} = 1 mA	[2]	0	-	0.125 × V _{CCB}	mV
	voltage	IO_SIM; I _{OL} = 1 mA	[2]	0	-	0.125 × V _{CCB}	mV
		IO_HOST; I _{OL} = 1 mA	[2]	0	-	0.25 × V _{CCA}	mV
R _{pd}	pull-down resistance	CLK_HOST/SIM, RST_HOST/SIM; EN = 0		70	100	130	kΩ
EMI filter						,	
R _s	series resistance	IO_SIM; R1 tolerance ± 30 % ^[4]	[2]	-	30	-	Ω
		RST_SIM; R1 tolerance ± 30 % [4]		-	30	-	Ω
		CLK_SIM; R1 tolerance ± 30 % [4]	[2]	-	30	-	Ω
C _{io}	input/output	IO_SIM	[2]	-	8.5	-	pF
	capacitance	RST_SIM		-	8.5	-	pF
		CLK_SIM	[2]	-	8.5	-	pF

Typical values measured at 25 °C. V_{IL} , V_{IH} depend on the individual supply voltage per interface. See Figure 11 for details.

^[1] [2] [3] [4] Guaranteed by design

SIM card interface level translator with EMI filter and ESD protection


Table 9. Dynamic characteristics

 $1.65~V \le V_{CCB} \le 3.6~V$; $1.08~V \le V_{CCA} \le 1.95~V$; $f_{clk} = f_{io} = 1~MHz$; $T_{amb} = -40~^{\circ}C$ to $+85~^{\circ}C$; unless otherwise specified. Refer to Figure 9.

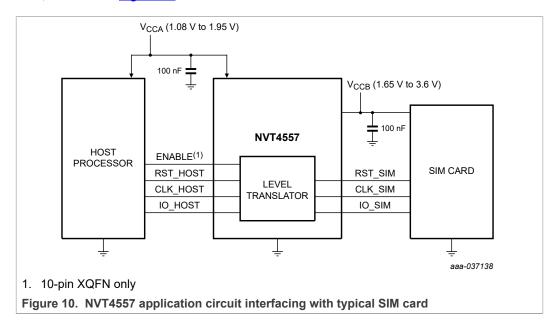
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CCA} = 1.	8 V; V _{CCB} = 3.0 V; SIM card	$C_L \le 30 \text{ pF}$; host $C_L \le 10 \text{ pF}$					
t _{PD}	propagation delay	I/O channel; SIM card side to host side		-	8	15	ns
		all channels; host side to SIM card side		-	8	15	ns
t _t	transition time			-	-	10	ns
t _{sk(o)}	output skew time	between channels; IO_SIM and CLK_SIM	[1]	-	2	-	ns
f _{clk}	clock frequency	CLK_SIM [2]		-	-	10	MHz
V _{CCA} = 1.	2 V; V _{CCB} = 1.8 V; SIM card	$C_L \le 30 \text{ pF}$; host $C_L \le 10 \text{ pF}$,			'	
t _{PD}	propagation delay	I/O channel; SIM card side to host side		-	15	25	ns
		all channels; host side to SIM card side		-	15	25	ns
t _t	transition time			-	-	10	ns
t _{sk(o)}	output skew time	between channels; IO_SIM and CLK_SIM	[1]	-	2	-	ns
f _{clk}	clock frequency	CLK_SIM [2]		-	-	10	MHz

^[1] Skew between any two outputs of the same package switching in the same direction with the same C_L.

9.1 Waveforms

Measurement points are given in <u>Table 9</u>.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. t_{PHL} and t_{PLH} are t_{PD} propagation delay; t_{THL} and t_{TLH} are the transition time.


Figure 9. Data input to data output propagation delay times

^[2] Guaranteed by design

SIM card interface level translator with EMI filter and ESD protection

10 Application information

The application circuit for the NVT4557, which shows the typical interface with a SIM card, is shown in Figure 10.

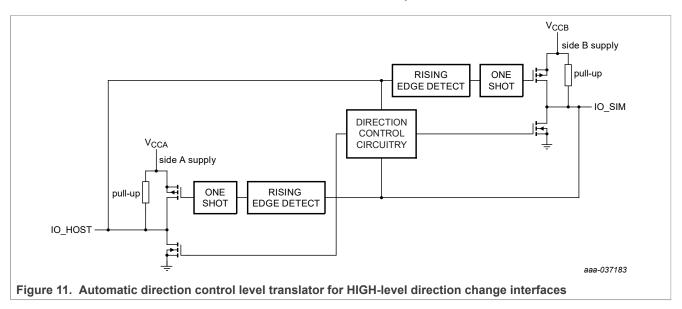
10.1 Input/output capacitor considerations

It is recommended that a 1 μ F and 100 nF capacitors having low Equivalent Series Resistance (ESR) are used respectively at V_{CCA} and V_{CCB} input terminals of the device. X5R and X7R type multi-layer ceramic capacitors (MLCC) are preferred because they have minimal variation in value and ESR over temperature. The maximum ESR should be < 500 m Ω (50 m Ω typical).

10.2 Layout consideration

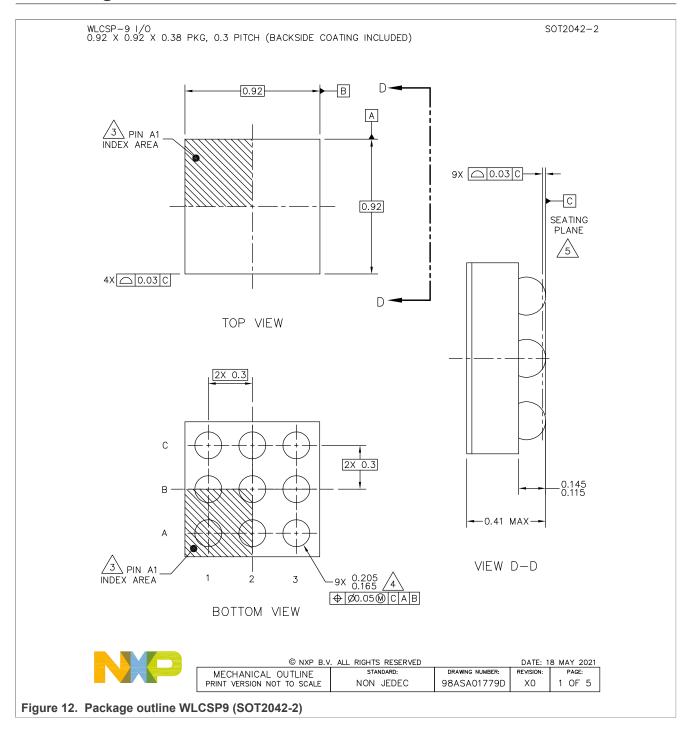
The capacitors should be placed directly at the terminals and ground plane. It is recommended to design the PCB so that the V_{CCA} and V_{CCB} pins are bypassed with a capacitor with each ground returning to a common node at the GND pin of the device such that ground loops are minimized.

Additional information can be found in AN13158 NVT4858/NVT4557 voltage-level translator layout guideline.


10.3 Level translator stage

The architecture of the device I/O channel is shown in Figure 11. The device does not require an extra input signal to control the direction of data flow from host to SIM or from SIM to host. As a change of driving direction is just possible when both sides are in HIGH state, the control logic is recognizing the first falling edge granting it control about the other signal side. During a rising edge signal, the non-driving output is driven by a one-shot circuit to accelerate the rising edge. In case of a communication error or some other unforeseen incident that would drive both connected sides to be drivers at the same time, the internal logic automatically prevents stuck-at situation, so both I/Os will return to HIGH level once released from being driven LOW.

NVT4557


SIM card interface level translator with EMI filter and ESD protection

The channels RST and CLK just contain single direction drivers without the holding mechanism of the I/O channel, as these are just driven from the host to the card side.

SIM card interface level translator with EMI filter and ESD protection

11 Package outline

SIM card interface level translator with EMI filter and ESD protection

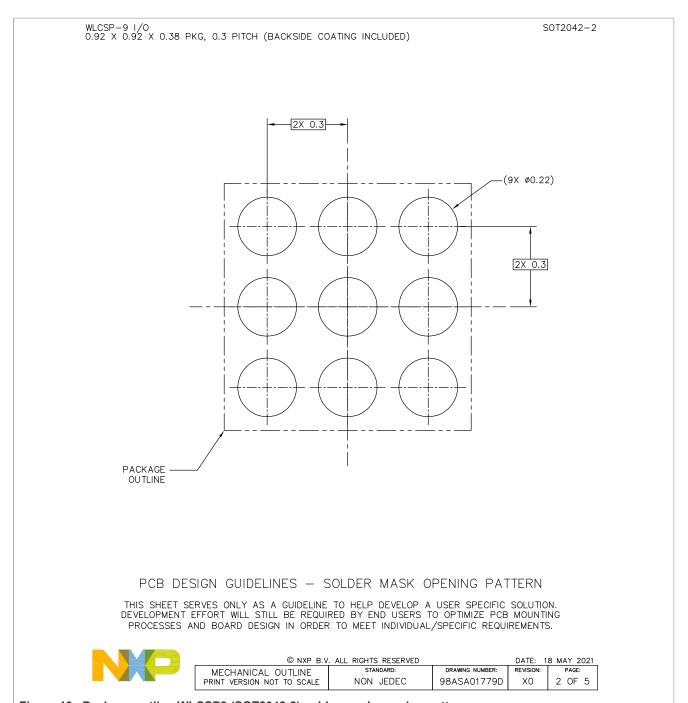


Figure 13. Package outline WLCSP9 (SOT2042-2) solder mask opening pattern

SIM card interface level translator with EMI filter and ESD protection

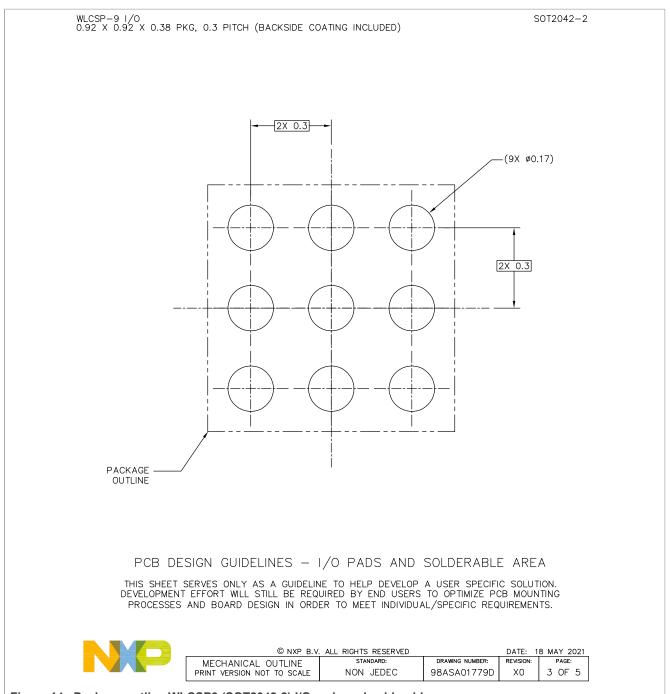


Figure 14. Package outline WLCSP9 (SOT2042-2) I/O pads and solderable area

SIM card interface level translator with EMI filter and ESD protection

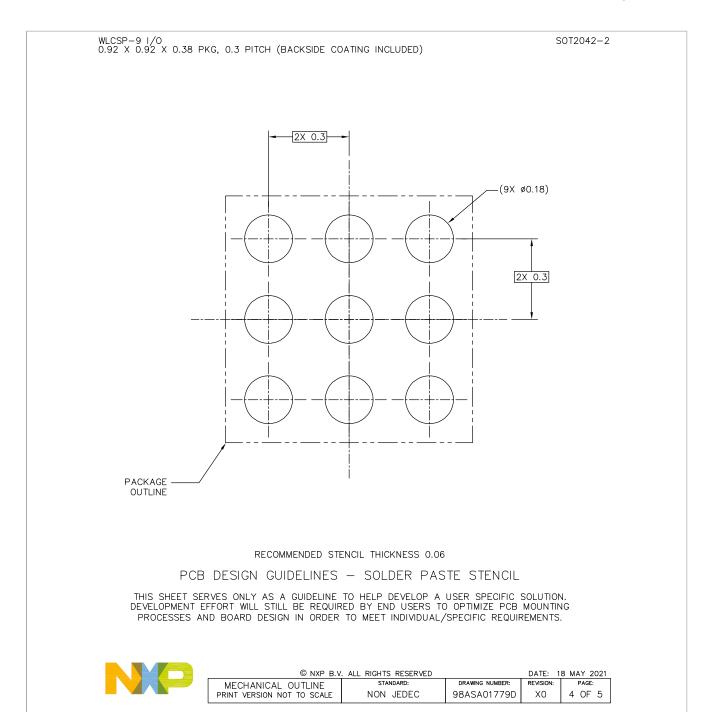


Figure 15. Package outline WLCSP9 (SOT2042-2) solder paste stencil

SIM card interface level translator with EMI filter and ESD protection

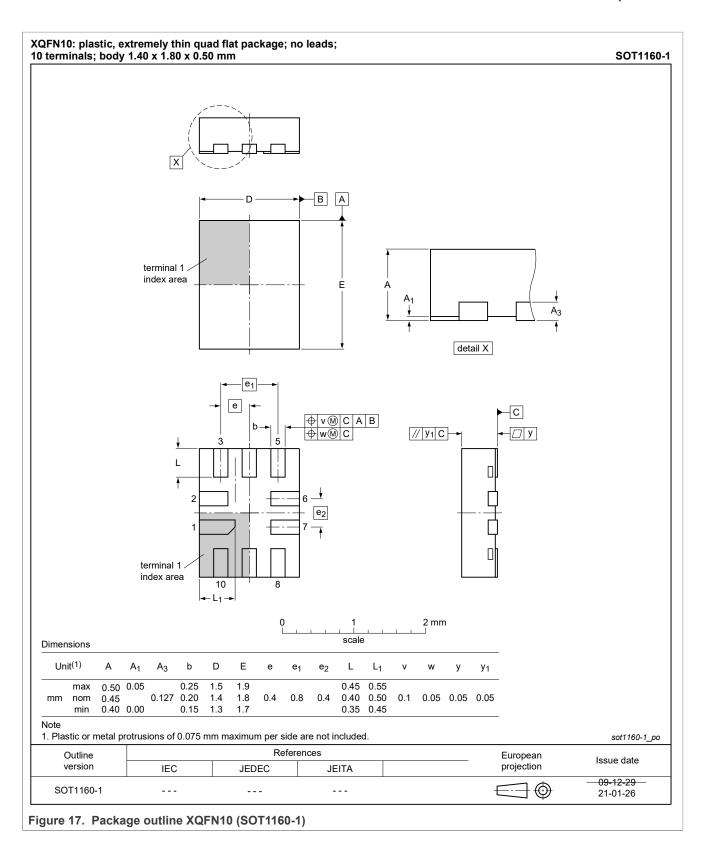
WLCSP-9 1/0 0.92 x 0.92 x 0.38 PKG, 0.3 PITCH (BACKSIDE COATING INCLUDED) SOT2042-2

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

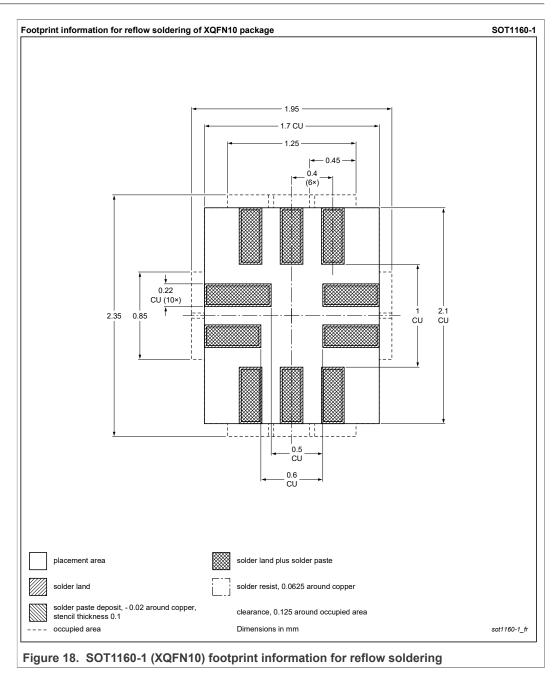
3. PIN A1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4 MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM C. 5 DATUM C, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.


6. THIS PACKAGE HAS A BACK SIDE COATING THICKNESS OF 0.025.

© NXP B.V. ALL RIGHTS RESERVED DATE: 18 MAY 202								
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:				
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA01779D	X0	5 OF 5				

Figure 16. Package outline WLCSP9 (SOT2042-2) notes


SIM card interface level translator with EMI filter and ESD protection

NVT4557

SIM card interface level translator with EMI filter and ESD protection

12 PCB layout

SIM card interface level translator with EMI filter and ESD protection

13 Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

SIM card interface level translator with EMI filter and ESD protection

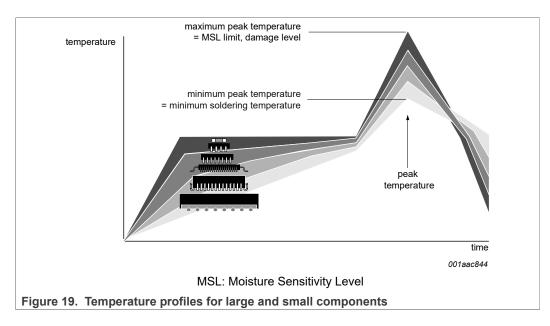
13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 19</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board
 is heated to the peak temperature) and cooling down. It is imperative that the peak
 temperature is high enough for the solder to make reliable solder joints (a solder
 paste characteristic). In addition, the peak temperature must be low enough that the
 packages and/or boards are not damaged. The peak temperature of the package
 depends on package thickness and volume and is classified in accordance with
 Table 10 and Table 11

Table 10. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 11. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 19.

SIM card interface level translator with EMI filter and ESD protection

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

SIM card interface level translator with EMI filter and ESD protection

14 Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged-Device Model
DP	Dry Pack
ESD	ElectroStatic Discharge
ESR	Equivalent Series Resistance
НВМ	Human Body Model
I/O	Input/Output
LDO	Low DropOut regulator
РСВ	Printed-Circuit Board
PMOS	Positive-channel Metal-Oxide Semiconductor
SIM	Subscriber Identification Module

SIM card interface level translator with EMI filter and ESD protection

15 Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NVT4557 v.2.0	20210915	Product data sheet	-	NVT4557 v.1.0
Modifications:	• Table 6: Correct	 Added NVT4557UK <u>Table 6</u>: Corrected V_I to be consistent with V_I in recommended values table; added note to air discharge ESD 		
NVT4557 v.1.0	20210421	Product data sheet	-	-

SIM card interface level translator with EMI filter and ESD protection

16 Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

16.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

 $\ensuremath{\mathbf{Applications}}$ — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NVT4557

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved

SIM card interface level translator with EMI filter and ESD protection

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever

customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

SIM card interface level translator with EMI filter and ESD protection

Tables

Tab. 1. Tab. 2. Tab. 3. Tab. 4. Tab. 5. Tab. 6. Tab. 7.	Ordering information 2 Ordering options 2 Pin description 3 Function table 4 Pin condition 4 Limiting values 6 Supplies 8	Tab. 8. Tab. 9. Tab. 10. Tab. 11. Tab. 12. Tab. 13.	Static characteristics	. 10 . 21 21 23
Figur	es			
Fig. 1. Fig. 2.	Functional diagram2 Bump configuration for WLCSP9	Fig. 11.	Automatic direction control level translator for HIGH-level direction change interfaces	. 12
Fig. 3.	Bump mapping for WLCSP93	Fig. 12.	Package outline WLCSP9 (SOT2042-2)	
Fig. 4.	Pin configuration for XQFN103	Fig. 13.	Package outline WLCSP9 (SOT2042-2)	
Fig. 5.	Shutdown sequence for RST_SIM, CLK_		solder mask opening pattern	14
	SIM, IO_SIM and VCCA/VCCB of	Fig. 14.	Package outline WLCSP9 (SOT2042-2) I/O	
	NVT4557 SIM card translator5		pads and solderable area	. 15
Fig. 6.	RST/CLK voltage level translation	Fig. 15.	Package outline WLCSP9 (SOT2042-2)	
	architecture5		solder paste stencil	. 16
Fig. 7.	O voltage level translation architecture 6	Fig. 16.	Package outline WLCSP9 (SOT2042-2)	
Fig. 8.	Operating Mode Current over Frequency8		notes	
Fig. 9.	Data input to data output propagation delay	Fig. 17.	Package outline XQFN10 (SOT1160-1)	. 18
F: 40	times	Fig. 18.	SOT1160-1 (XQFN10) footprint information	40
Fig. 10.	NVT4557 application circuit interfacing with	F: 40	for reflow soldering	19
	typical SIM card11	Fig. 19.	Temperature profiles for large and small	00
			components	22

SIM card interface level translator with EMI filter and ESD protection

Contents

1	General description	1
2	Features and benefits	1
3	Applications	
4	Ordering information	2
5	Functional diagram	2
6	Pinning information	3
6.1	Pin description	
7	Functional description	4
7.1	Shutdown sequence of NVT4557 (10-pin	
	version only)	4
7.2	Embedded Enable - 9 pin and 10 pin if	
	Enable is tied to VCCA	5
7.3	EMI filter	6
7.4	ESD protection	6
8	Limiting values	6
9	Characteristics	8
9.1	Waveforms	10
10	Application information	11
10.1	Input/output capacitor considerations	11
10.2	Layout consideration	11
10.3	Level translator stage	11
11	Package outline	
12	PCB layout	19
13	Soldering of SMD packages	20
13.1	Introduction to soldering	
13.2	Wave and reflow soldering	
13.3	Wave soldering	
13.4	Reflow soldering	
14	Abbreviations	23
15	Revision history	
16	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.