

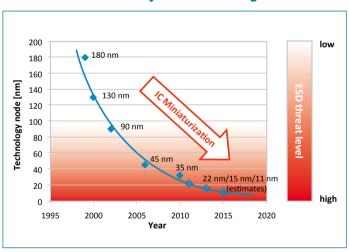
NXP ultra-low clamping ESD protection diodes PESD5V0X1U family

High-performance ESD protection for sensitive ICs

Specifically designed for ultra-low clamping voltages, ultra-low overshoot voltages, and ultra-low capacitance, these advanced devices provide the highest levels of protection against ESD strikes for highly ESD-sensitive ICs.

Key features

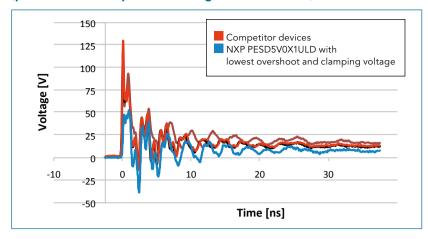
- ▶ Best-in-class overshoot voltage for an 8 kV ESD strike
- Ultra-low clamping voltage of 7.5 V @ 30 ns after an 8 kV ESD strike
- ▶ Ultra-low capacitance: 0.95 pF
- ▶ Innovative DFN1006D-2 (SOD882D) package with solderable, tin-plated side pads


Key benefits

- ► Highest level of protection against ESD strikes for highly sensitive ICs
- ▶ Ultra-small packages for compact PCB designs

Applications

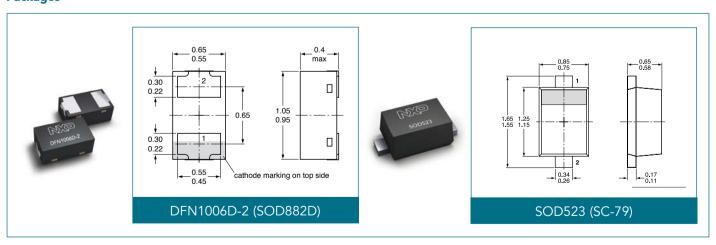
- ▶ High-speed data interfaces in communication, consumer, and computing markets
- ▶ Protection for highly sensitive interface controller ICs


Increased ESD vulnerability due to continuing miniaturization

The ultra-small process technologies used to produce today's miniature semiconductors have the side-effect of making the ICs more vulnerable to voltage transients caused by ESD strikes. NXP's PESD5V0X1U family supports these highly sensitive ICs by providing high-performance ESD protection.

Clamping performance of the unidirectional PESD5V0X1ULD compared to other devices with comparable capacitance (positive 8 kV ESD pulse according to IEC61000-4-2)

Device	Capacitance max.	Overshoot voltage at 8 kV ESD pulse	Clamping voltage at 30 ns 8 kV ESD pulse	
PESD5V0X1ULD	1.15 pF	53 V	7.5 V	
Competitor 1	0.9 pF	130 V	13.1 V	
Competitor 2	0.6 pF	93 V	17.1 V	
Competitor 3	2.5 pF	117 V	12.6 V	


Compared to other devices with similar electrical parameters, PESD5V0X1U diodes have the lowest overshoot and clamping voltages after 30 ns for an 8 kV ESD pulse, according to

IEC61000-4-2. The combination of extremely low capacitance and ultra-low clamping voltage makes these devices ideal for high-speed dataline protection applications.

Ultra-low clamping ESD protection diodes family

Product	V _{RWM} [V]	C, typ [pF]	C, max [pF]	ESD rating max [kV]	R _{yn} @ 10A [Ω]	Package	Configuration
PESD5V0X1UB	5 V	0.95 pF	1.15 pF	8 kV	0.25 Ω	SOD523 (1.2 x 0.8 x 0.6 mm)	1 2 mse209
PESD5V0X1UAB	5 V	1.55 pF	1.75 pF	15 kV	0.15 Ω		
PESD5V0X1ULD	5 V	0.95 pF	1.15 pF	8 kV	0.25 Ω	DFN1006D-2	1 2
PESD5V0X1UALD	5 V	1.55 pF	1.75 pF	15 kV	0.15 Ω	(SOD882D) (1.0 x 0.6 x 0.37 mm)	006aaa152

Packages

www.nxp.com

© 2012 NXP Semiconductors N.V.

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: August 2012 Document order number: 9397 750 17132 Printed in the Netherlands