INCH-POUND

MIL-M-38510/14E 21 March 2005 SUPERSEDING MIL-M-38510/14D 2 August 1982

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, TTL, DATA SELECTORS/MULTIPLEXERS, MONOLITHIC SILICON

Inactive for new design after 7 September 1995.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic, silicon, TTL, data selectors/multiplexers, logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
 - 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	Circuit
01	Sixteen-input data selector/multiplexer, with enable
02, 06	Eight-input data selector/multiplexer, with enable
03	Dual, four-input data selector/multiplexer, with enable
04	Dual, four-input data selector/multiplexer, without enable
05	Quad, two-input data selector/multiplexer, with enable

- 1.2.2 <u>Device class.</u> The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 <u>Case outlines.</u> The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat-pack
J	GDIP1-T24 or CDIP2-T24	24	Dual-in-line
K	GDFP2-F24 or CDFP3-F24	24	Flat-pack
Z	GDFP7-F24 or CDFP8-F24	24	Flat-pack

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

AMSC N/A FSC 5962

1.3 Absolute maximum ratings.

-0.5 V to +7.0 V
-1.5 V at -12 mA to +5.5 V
-65°C to +150°C
375 mW
268 mW
286 mW
248 mW
275 mW
300°C
(See MIL-STD-1835)
175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V minimum to 5.5 V maximum
Minimum high level input voltage (V _{IH})	2.0 V dc
Maximum low level input voltage (V _{IL})	0.8 V dc
Maximum low level output current (I _{IL})	16 mA
Normalized fanout (each output) 3/	
Low logic level	10 maximum
High logic level	20 maximum
Case operating temperature range (T _C)	-55°C to 125°C

2.0 APPLICABLE DOCUMENT

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

 $[\]underline{1}$ / Must withstand the added P_D due to short circuit condition (e.g. I_{OS} test).

^{2/} Maximum junction temperature should not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

<u>3/</u> Device will fanout in both high and low levels to the specified number of inputs of the same device type as that being tested.

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Logic diagrams and terminal connections.</u> The logic diagrams and terminal connections shall be as specified on figure 1 and 2.
 - 3.3.2 Truth tables. The truth tables shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuit.</u> The schematic circuit shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. Case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. Lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table 1 and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements</u>. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 4 (see MIL-PRF-38535, appendix A).

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Device	Lim	nits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified	type	Min	Max	
High level output voltage	Voн	V _{CC} = 4.5 V	All	2.4		V
		I _{OH} =8 mA				
Low level output voltage	VoL	V _{CC} = 4.5 V	All		0.4	V
		I _{OL} = 16 mA				
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V	All		-1.5	V
		I _{IN} = -12 mA				
Low level input current	Ιμ	V _{CC} = 5.5 V	02, 03,	-0.7	-1.6	mA
	"-	V _{IN} = 0.4 V	04 05, 06			
			01	-0.6	-1.6	
High-level input current	l _{IH1}	V _{CC} = 5.5 V	All		40	μA
	ויווי	V _{IN} = 2.5 V				
High-level input current	luuo	V _{CC} = V _{IN} = 5.5 V	All		100	μA
	l _{IH2}	vCC = vIV = 5.5 v				r
Short circuit output current	Ios	V _{CC} = 5.5 V	01, 03, 06	-20	-55	mA
		V _{OUT} = 0 V <u>1</u> /	02, 04, 05	-20	-120	mA
Supply current	Icc	V _{CC} = 5.5 V	01		68	mA
	100	VGC 0.0 V	02,06		48	mA
			04		45	mA
			03		52	mA
			05		50	mA
Propagation delay time high-to-low level output from A, B, C or D to W	^t PHL1	$R_L = 390\Omega \pm 5\%$	01	8	40	ns
Propagation delay time low-to-high level output from A, B, C or D to W	^t PLH1	$C_L = 50 \text{ pF minimum}$ (figure 4)	01	8	43	ns
Propagation delay time high-to-low level output from strobe to W	tPHL2		01	6	37	ns
Propagation delay time low-to-high level output from strobe to W	t _{PLH2}		01	6	32	ns
Propagation delay time high-to-low level output from E ₀ –E ₁₅ to W	t _{PHL3}		01	3	23	ns
Propagation delay time low-to-high level output from E ₀ –E ₁₅ to W	t _{PLH3}		01	3	30	ns

 $[\]underline{1}$ / Not more than one should be shorted at one time.

TABLE I. <u>Electrical performance characteristics - Continued.</u>

		Conditions	Device	Lim	nits	
Test	Symbol	-55°C ≤ T _C ≤ +125°C	type	Min	Max	Unit
	-	unless otherwise specified				
Propagation delay time, high-to-low	t _{PHL1}	$R_L = 390\Omega \pm 5\%$	02	6	40	ns
level output from A, B, or C to W		_	06	6	48	
Propagation delay time, low-to-high	t _{PLH1}	C _L = 50 pF minimum	02	6	38	ns
level output from A, B, or C to W		(figure 4)	06	6	43	
Propagation delay time, high-to-low	t _{PHL2}		02	8	49	ns
level output from A, B, or C to Y			06	8	60	
Propagation delay time, low-to-high	t _{PLH2}		02	8	45	ns
level output from A, B, or C to Y			06	8	58	
Propagation delay time, high-to-low	tPHL3		02	6	37	ns
level output from strobe to W			06	6	38	
Propagation delay time, low-to-high level output from strobe to W	tPLH3		02, 06	6	35	ns
Propagation delay time, high-to-low	tPHL4		02	8	46	ns
level output from strobe to Y	1115		06	8	52	
Propagation delay time, low-to-high	tPLH4		02	8	42	ns
level output from strobe to Y			06	8	52	
Propagation delay time, high-to-low	t _{PHL5}		02, 06	3	32	ns
level output from D ₀ -D ₇ to W						
Propagation delay time, low-to-high	tPLH5		02, 06	3	26	ns
level output from D ₀ -D ₇ to W						
Propagation delay time, high-to-low	tPHL6		02	6	41	ns
level output from D ₀ -D ₇ to Y			06	6	44	
Propagation delay time, low-to-high	tPLH6		02	6	33	ns
level output from D ₀ -D ₇ to Y			06	6	36	
Propagation delay time, high-to-low level output from data to Y	^t PHL1	R _L = 390Ω ±5%,	03	3	29	ns
Propagation delay time, low-to-high level output from data to Y	t _{PLH1}	C _L = 50 pF minimum (figure 5)	03	3	28	ns
Propagation delay time, high-to-low	t _{PHL2}		03	6	44	ns
level output from A or B to Y			- 00	0	40	
Propagation delay time, low-to-high level output from A or B to Y	^t PLH2		03	6	42	ns
Propagation delay time, high-to-low level output from strobe to Y	^t PHL3		03	6	32	ns
Propagation delay time, low-to-high level output from strobe to Y	t _{PLH3}		03	6	42	ns

TABLE I. <u>Electrical performance characteristics - Continued.</u>

		Conditions	Device	Lim	its	
Test	Symbol	$-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified	type	Min	Max	Unit
Propagation delay time high-to-low level output from data to Y	t _{PHL1}	$R_L = 390\Omega \pm 5\%$,	04	3	41	ns
Propagation delay time low-to-high level output from data to Y	t _{PLH1}	$C_L = 50 \text{ pF minimum}$ (figure 5)	04	3	39	ns
Propagation delay time high-to-low level output from data to W	^t PHL2		04	3	25	ns
Propagation delay time low-to-high level output from data to W	t _{PLH2}		04	3	24	ns
Propagation delay time high-to-low level output from A or B to Y	tPHL3		04	6	51	ns
Propagation delay time low-to-high level output from A or B to Y	t _{PLH3}		04	6	51	ns
Propagation delay time high-to-low level output from A or B to W	t _{PHL4}		04	6	39	ns
Propagation delay time low-to-high level output from A or B to W	t _{PLH4}		04	6	34	ns
Propagation delay time high-to-low level output from A to Y	tPHL1	$R_L = 390\Omega \pm 5\%$,	05	6	49	ns
Propagation delay time low-to-high level output from A to Y	tPLH1	C _L = 50 pF minimum (figure 6)	05	6	41	ns
Propagation delay time high-to-low level output from strobe to Y	tPHL2		05	3	39	ns
Propagation delay time low-to-high level output from strobe to Y	tPLH2		05	3	33	ns
Propagation delay time high-to-low level output from data to Y	t _{PHL3}		05	3	25	ns
Propagation delay time low-to-high level output from data to Y	t _{PLH3}		05	3	35	ns

TABLE II. Electrical test requirements.

	Subgroups (s	see table III)
MIL-PRF-38535	Class S	Class B
Test requirement	Devices	Devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3	N/A
Groups C end point electrical parameters	1, 2, 3	1, 2, 3
Group D end point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6, shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows:
- 4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

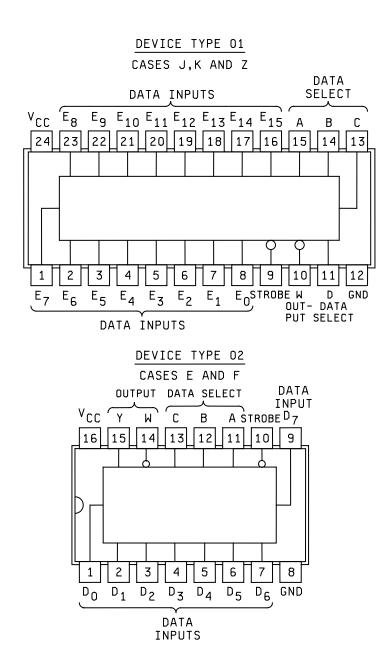
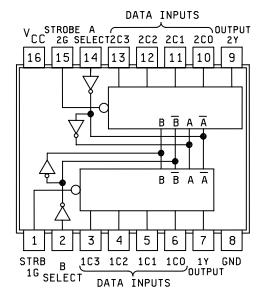



Figure 1. <u>Terminal connections (top view).</u>

DEVICE TYPE 03 CASES E AND F

DEVICE TYPE 04 CASES E AND F

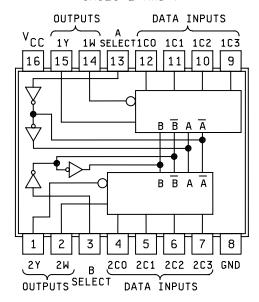
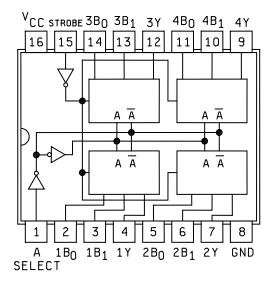



Figure 1. <u>Terminal connections (top view)</u> - Continued.

DEVICE TYPE 05 CASES E AND F

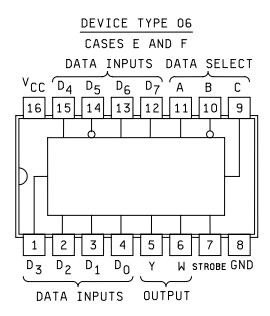


Figure 1. <u>Terminal connections (top view)</u> - Continued.

DEVICE TYPE 01 STROBE (ENABLE) E₀ -E₁ -E2 -E₅ -DATA A O— OUTPUT W E10-E₁₁-E₁₂-E14 DATA SELECT (BINARY)

Figure 2. Logic diagrams.

DEVICE TYPES 02 AND 06

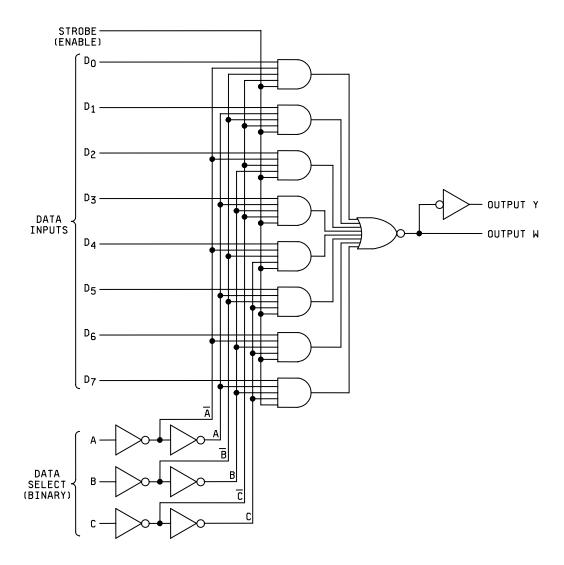


Figure 2. <u>Logic diagrams</u> – Continued.

DEVICE TYPE 03

Figure 2. <u>Logic diagrams</u> – Continued.

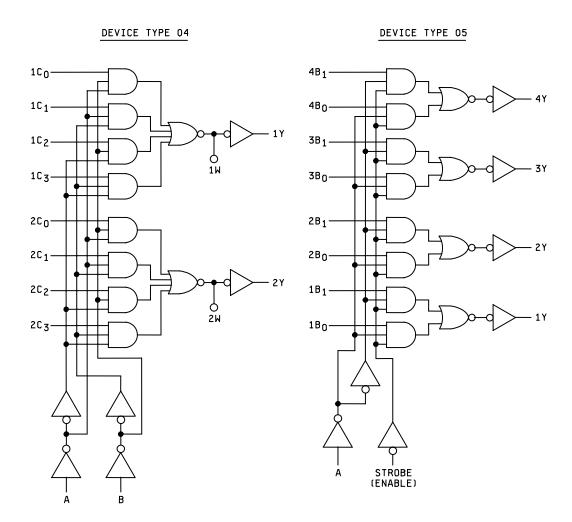


Figure 2. <u>Logic diagrams</u> – Continued.

Device type 01

INPUTS													OUTPUT								
D	С	В	Α	STROBE	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	E ₁₁	E ₁₂	E ₁₃	E ₁₄	E ₁₅	W
Χ	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Н
L	L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	L	L	L	L	Ι	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	L	L	Н	L	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	L	L	Н	L	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	L	Н	L	L	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	L	Н	L	L	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	L	Н	Н	L	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	L	Н	Н	L	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	Н	L	L	L	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	Н	L	L	L	Х	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	Н	L	Н	L	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	Н	L	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	Н	Н	L	L	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	Н	Н	L	L	Х	Х	Х	Х	Х	Х	Η	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
L	Н	Н	Н	L	Х	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Х	Н
L	Н	Н	Н	L	Х	Х	Х	Х	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х	L
Н	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Х	Н
Н	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Х	L
Н	L	L	Н	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Х	Н
Н	L	L	Н	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	L
Н	L	Н	L	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	Х	Х	Х	Х	Х	Н
Н	L	Н	L	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Н	Х	Х	Х	Х	Х	L
Н	L	Н	Н	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	L	Х	Х	Х	Х	Н
Н	L	Н	Н	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Η	Х	Х	Х	Х	L
Н	Н	L	L	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	L	Х	Х	Х	Н
Н	Н	L	L	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Н	Х	Х	Х	L
Н	Н	L	Н	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	L	Х	Х	Н
Н	Н	L	Η	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Н	Х	Х	L
Н	Н	Η	Ш	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	Х	Н
Н	Н	Η	Ш	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	Х	L
Н	Н	Н	Н	L	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	L	Н
Н	Η	Η	Τ	L	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	L

When used to indicate an input condition, X = High logic level or low logic level.

Figure 3. <u>Truth tables.</u>

Device types 02 and 06

				11	NPUT:	S						OUTPUTS	
С	В	Α	STROBE	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	Υ	W
Х	Х	Χ	Н	Х	Х	Х	Х	Х	Х	Х	Х	L	Н
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	L	Н
L	L	L	L	Н	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Х	L	Х	Х	Х	Х	Х	Х	L	Н
L	L	Н	L	Х	Н	Х	Х	Х	Х	Х	Х	Н	L
L	Н	L	L	Х	Х	L	Х	Х	Х	Х	Х	L	Н
L	Н	L	L	Х	Х	Н	Х	Х	Х	Х	Х	Н	L
L	Н	Н	L	Х	Х	Х	L	Х	Х	Х	Х	L	Н
L	Н	Н	L	Х	Х	Х	Н	Х	Х	Х	Х	Н	L
Н	L	L	L	Х	Х	Х	Х	L	Х	Х	Х	L	Н
Н	L	L	L	Х	Х	Х	Х	Н	Х	Х	Х	Н	L
Н	L	Н	L	Х	Х	Х	Х	Х	L	Х	Х	L	Н
Н	L	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Н	L
Н	Н	L	L	Х	Х	Х	Х	Х	Х	L	Х	L	Н
Н	Н	L	L	Х	Х	Х	Х	Х	Х	Н	Х	Н	L
Н	Н	Η	L	Х	Х	Х	Х	Х	Х	Х	L	L	Н
Н	Н	Н	L	Х	Х	Х	Х	Х	Х	Х	Н	Н	L

When used to indicate an input, X = Irrelevant. H = High level, L = Low level.

	RESS UTS	С	ATA	INPUT	S	STROBE	OUTPUT
В	Α	C ₀	C ₁	C ₂	C ₃	G	Υ
Х	Χ	Х	Х	Х	Х	Н	L
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	Х	Х	L	Н
L	Н	x L		Х	Х	L	L
L	Н	Х	Н	Х	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	Х	Х	Η	Х	Ĺ	Η
Н	Н	Х	Х	Х	Ĺ	L	Ĺ
Н	Н	Х	Х	Х	Н	Ĺ	Н

Address inputs A and B are common to both sections. H = high level, L = low level, X = irrelevant.

Figure 3. <u>Truth tables</u> – Continued.

Device type 04

	ress uts		D inp	Outputs			
В	Α	C ₀	C ₁	C ₂	C ₃	Υ	W
L	L	L	Χ	Χ	Χ	L	Н
L	L	Н	Χ	Х	Χ	Н	L
L	Н	Χ	L	Х	Χ	L	Н
L	Н	Χ	Н	Х	Χ	Н	L
Н	L	Χ	Χ	L	Χ	L	Н
Н	L	Χ	Χ	Н	Χ	Н	L
Н	Н	Χ	Χ	Х	L	L	Н
Н	Н	Χ	Χ	X	Н	Н	L

Address inputs A and B are common to both sections. H = High level, L = Low level, X = Irrelevant.

Device type 05

Strobe (enable)	Select input	Da inp		Output
G	Α	B ₀	B ₁	Y
Н	Х	Х	Х	L
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Χ	L
L	L	Н	Χ	Н

Address A and strobe G are common to all sections. H = High level, L = Low level, X = Irrelevant.

FIGURE 3. <u>Truth tables</u> – Continued.

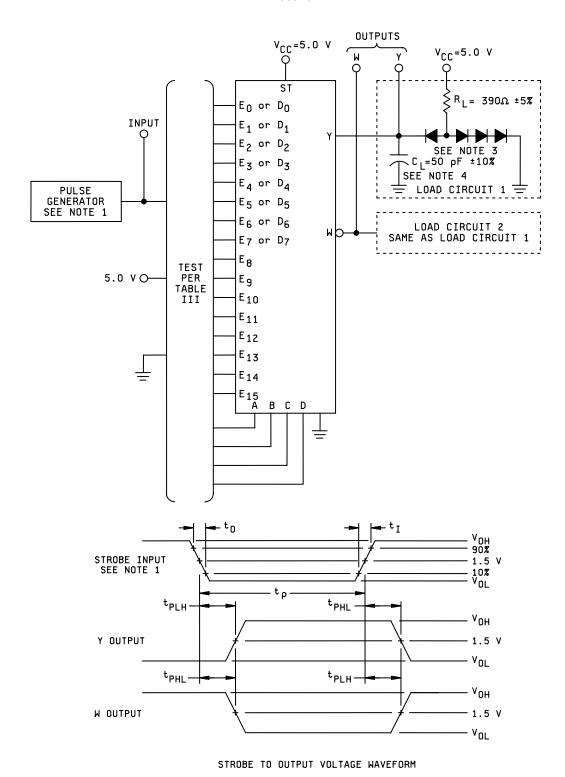
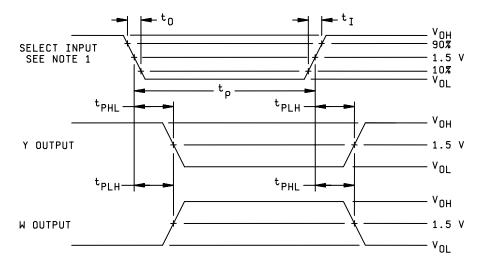
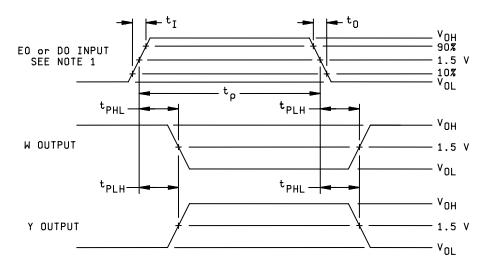
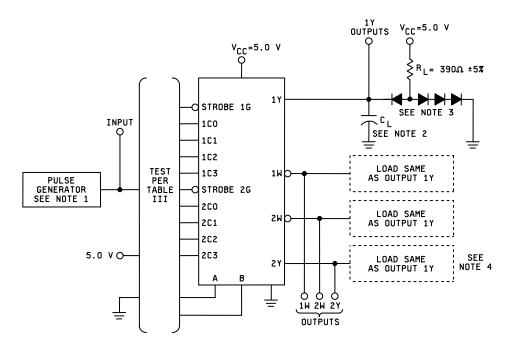
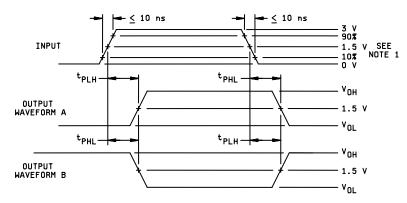




FIGURE 4. Switching test for device types 01, 02, and 06.

SELECT INPUT TO OUTPUT VOLTAGE WAVEFORM

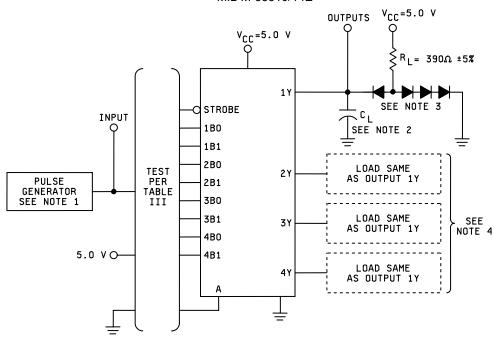


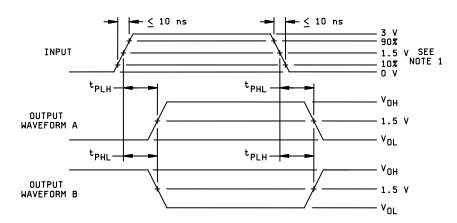

DATA INPUT TO OUTPUT VOLTAGE WAVEFORM

NOTES:

- 1. The input pulse has the following characteristics: V_{OH} = 3 V, V_{OL} = 0 V, t_1 = t_0 = 10 ns, t_p = 500 ns, PRR \leq 1 MHz, duty cycle = 50% \pm 15%, and generator $Z_{Out} \approx 50\Omega$.
- 2. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 or equivalent.
- Load circuits on a given output are only required where the specific test given in table III indicates "OUT" on that output. Load circuits may otherwise be omitted.

FIGURE 4. Switching test for device types 01, 02, and 06 - Continued.


VOLTAGE WAVEFORMS


Switching time	Output waveform
CN to Y (types 03 and 04)	A
CN to W (type 04 only)	В
A or B to Y (types 03 and 04)	А
A or B to W (type 04 only)	В
G to Y (type 03 only)	В

NOTES:

- 1. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = $50\% \pm 15\%$ and $Z_{out} \approx 50\Omega$.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ and includes probe and jig capacitance.
- 3. All diodes are 1N3064, or equivalent.
- 4. Load circuits on a given output are only required where the specific test given in table III indicates "OUT" on that output. Load circuits may otherwise be omitted.

FIGURE 5. Switching test for device types 03 and 04.

VOLTAGE WAVEFORMS

Input	Output waveform
A to Y	А
B to Y	А
S to Y	В

NOTES:

- 1. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50% \pm 15% and $Z_{out} \approx 50\Omega$.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ and includes probe and jig capacitance.
- 3. All diodes are 1N3064 or equivalent.
- Load circuits on a given output are only required where the specific test given in table III indicates "OUT" on that output. Load circuits may otherwise be omitted.

FIGURE 6. Switching test for device type 05.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open).

	Unit	>	>	>::::::::::::::::::::::::::::::::::::::	É
Test limits	Max		9.4	r).	£
Te	Min	2.4			<u>, , , , , , , , , , , , , , , , , , , </u>
	Meas. terminal	8	×	G D C D B A G C C D C B A C C C D C C D C C D C C C C C C C C C	
12	GND	GND	n		
=	Ω		GND	-12тА	ON
10	Μ	8mA	16mA		
6	g	2.0 V	0.8 V	-12mA	GND
80	E ₀		2.0 V	-12mA	> 4.0
7	E1			-12mA	> 4.
9	E2			-12mA	V 4.0
5	E3			-12mA	> 4.0
4	E4			-12mA	> 4.0
က	E5			-12mA	V 4.0
2	E ₆			-12mA	V 4.0
-	E7			-12mA	V 4.0
Cases J, K,	Test No.	-	2	e 4 6 9 6 6 7 7 7 8 6 6 7 7 8 6 7 8 6 8 6 7 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8	4 2 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MIL- STD-883	method	3006	3007		600:
9	эушрог	V _{ОН}	Vol	<u>0</u>	۵
9	dnosans	-	T _C = 25°C		

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open).

ø	Unit	^	۸	^/	> =	*	3 3		:	*	n	ä	п	'n	"	39		n	"	"	*	39	,		: 3	٧	<u> </u>	*	"	"	"	"	"	n	я	"			=	"	ä	27	"	,,	: 3	: 3	"	и
Test limits	Max		0.4	15	2 4	¥	3 3	: :	=	×	n	×	и	я	n			n	я	n	я	9	n		: :	4	0.	×	n	я	я	31	n	n	×	n		=	n n	я	n	и	я	9	: 3	: 3	я	и
	Min	2.4																								7	?	7	3	ä	×	3	3	ä	ä	3			3	ä	ä	×	3	39	: 3	: 3	3	и
Mose	terminal	W	W	<	(8	ပ	۵ (·9	E ₀	E1	E ₂	E ₃	, ц	ţ ŭ	î î	E6	E7	E8	Ш	F 1	2 ;	E11	E12	E ₁₃	E14	E15	0	E1	E2	щ	Ē	ī L	î H	1 1	ì		E3	E10	E11	E12	Щ 1 °	2 ;	± !	E15	.D <	∢ 0	ם כ	٥
24	Vcc	4.5 V	n	"	3	¥			:	¥	¥	¥	,	3	3	1		¥	3	¥	"		y		. 3	7 2 7	, ,	¥	¥	¥	¥	*	¥	"	¥	ä	,		¥	¥	ä	n	¥		. 3	: 3	3	и
23	ъ В																	-12mA																	> > >	r O												
22	E)																		-12mA																	7 7												
21	E ₁₀																			-12mA																	;	0.4 \										
20	E11																				-12m4																		0.4 \									
19	E ₁₂																					4	-12mA																	0.4 \								
18	E ₁₃																							-IZMA																	0.4 \							
17	E ₁₄																							,	-12mA																	7 7 0						
16	E ₁₅																								4	¥1171-																	0.4 \	r o				
15	Α		GND	12m1																						CND	G G	5.5 V	GND	5.5 V	GND	5.5 V	GND	25.7		מאס מ	v ::	GND	5.5 V	GND	5.5 V	CINE	, r			0.4 V		
41	В		GND		-12mA																					CND	2	GND	5.5 V	5.5 V	GND	GND	5.5 \	75.5	. כועל		פואס :	5.5 \	5.5 V	GND	GND	75.		5		7 7	†	
13	ပ		GND			-12mA																				CNO	2	×	3	3	5.5 V		31	ä	CNC	ָבָּ ס		=	ä	5.5 V	я	n	3				7 6	v +: V
Cases J, K, Z	Test No.	-	2	6) 4	2	1 0	, ,	∞	တ	10	11	12	i (2		<u> </u>	15	16	17	18	5 6	2 6	0 70	17	77.5	23	+7	25	26	27	28	29	30	3.3	33	33	00	34	35	36	37	38	30	9 9	0 ;	- 4 - c	7 5	45 44
MIL- STD-883	method	3006	3007																							3000	6000	z	×	ä	×	ä	3	×	3	3		:	¥	2	n	21	ä	3	: 3		я	и
Odmy	5	МОН	Vol	70.	<u>.</u>	3		: :	:	=	×	ä	я	3	3			×	3	3	ä	=	3	: 1	: 3		=	=	3	3	3	3	3	ä	3	3	,		4	3	n	*	3	8		: 3	3	и
Subarous	50.50	-	$T_{\rm C} = 25^{\circ}{\rm C}$,	35	×	= =		:	3	×	×	n	3	n			и	n	3	n	3			: :	ä		3	×	×	n	*	3	n	3	"		:	×	"	×	2	×	3	: 3		×	n

See note at end of device type 01.

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

ts	Unit	Υп	3	3 :	: 3			=	3	3	n	×		ä	3	ä		×	×		ä	ä		ä	3		3	=	3		3	*	39		ä	ä	×	3	1		3	ä	¥	×	ä		3	ä	3	3	*	n		mA	МA			_
Test limits	Max	40	3	¥ :	: 3			:	z	¥	n	"		4	3	77		z	"		=	n		3	3		3	100			35	n	39		n	n	ä	77	3		3	n	n	×	n		ä	n	39	¥	ä	я		-55	89			
	M																																																					-20				
W d d	terminal	ტ	∢	ω '	ပ (י כ	E ₀	Щ.	E ₂	Е.	, т	i .	E2	E ₆	F.	ìı	Е	<u>е</u>	· :	E10	E11		E12	E13	2	E14	E ₁₅	O) <	∢	В	C) (ב	Ш	ű	ī ü	7 1	F3	E ₄	Es	Ë	, T	ìı	ا لل	E9	E ₁₀	E11	E13	1 H	л 5 - £	1 L	E15	≯	VCC			
12	GND	GND	n	3 :	: 3			=	¥	35	"	"		3	39	*		¥	"		39	"		3	39		3	=	3		39	n	,		n	n	39	"	*		3	39	"	**	ä		3	"	n	39	3	ä		n n	¥			
1	D		GND	GND	GND	7.4 \	2.0	=	3	¥	"	"		4	3		GIND	¥	n		×	77		*	99		=			GND	GND	GND) (2.0 <	=	n	ä	"	,		3	77	n		والح والح		3	79	"	39	3	ä		GND	5.5 V			
10	×																																																					GND				
o	9	2.4 V			i	رن دن =		=	3	ä	3	3		=	3	3		3	и		3	я		×	3		=	=	3		ä	я	3		3	я	3	3	,		ä	3	n	3	ä		3	ä	3	3	3	×		GND	5.5 V			
80	E ₀					7	V 4.7																												5.5 \																			GND				
7	E1							2.4 \																												5.5 V																						
9	E ₂								2.4 V																												75.5																			ed		7
2	E ₃									2.4 V																												7	2.0																	are omit		TIMO OTC
4	E4										2.4 V																												i	5.5 \																°C and Vi		2.7. 200
3	E5											777	۲. ۲ ۲																												5.5 V															t Tr = 125) 	1 1
2	E ₆													2.4 \																												5.5 V														o 1. excep		n d avon
~	E7														2.4 \																												5.5 \													Subaron		o cirpordiro
Cases J, K, Z	Test No.	45	46	47	84 6	9 d	OG I	51	52	53	54	u	e e	26	22	0	o o	26	9	3	61	62	30	63	3	40	65	99		/9	89	69	1 0	2	7	72	73	2 - 1	4	ري	75	77	78	2 6	n (00	81	82	83	84	82	9 8	8	87	88	ions and limits as subgroup 1, except $T_C = 125^{\circ}C$ and V_{1C} are omitted		ions and limits a
MIL- STD-883	method	3010	n	3 :	: 3	: 3		:	3	я	2	3		=	×	3		¥	n		3	×		*	3		=	=	3		×	я	,		3	я	3	3		:	3	3	*	3	3		3	=	*	3	*	3		3011	3005	Same tests, terminal conditions		terminal conditi
lodmy	9	IH	3	3	: :			:	3	ä	3	:			3	3		3	ä		3	ä		3	3		=	cHI	ZL. "		3	3	3		3	3	3	3	,		3	3	3	3	3		3		3	3	*	3		los	201	Same tests		Same toore
Subarous	- Charles	_	$T_C = 25^{\circ}C$	3	: :	. 3			3	×	ä	3		3	3	3		3	и		3	×		3	3		=	=		_	*	я	3		3	я	3	3	1		×	3	ä	3	3		3	3	3	3	*	3		3	n	2	c	n

TABLE III. Group A inspection for device type 01 – Continued.

Supplied Supplied	Milk	Symbol STD-863 Case J. K. 13 14 15 16 17	E ₁₅ E ₁₄ 17 2.4 V 2.4 V		24 V							
Michael Mich	March Marc		E16 E14		2.4 V					┸		
Net 3010 465 600 600 240 600	No.	I I I 3010	2.4 V 2.4 V		4.5 > 4.5			ıci		(D	4	
1	1	1,	2.4 \ 2.4 \		4.5 > 4.5				∀ M O			
1	47 OND 54V OND 54V OND 54V OND 55V OND	1	2.4 V 2.4 V		V 4.2				m U	_		
1	48	1	2.4 \ 2.4 \		> 4.2				ن	~		= :
1	Second S	1	2.4 V V 2.4 V		2.4 > 4.5				3			
1	51	Section Sect	2.4 V V 2.4 V		2.4 V				ء ب ح			3
1	53	1,	2.4 V		2.4 V				<u>.</u>	0		,
1	54 GND 55V 55V 55V 55V 55V 55V 55V 55V 55V 55	S	2.4 V		2.4 V					_		,
1	54 GND 55V GND	Color	2.5 > 4.2 > 4.2		24 >				E2	2		
Second Color Seco	54 GND 55 V GND GND 65 V GND	1	2.4 V V 2.4 V		2.4 V				E3	8		_
1	55	1	2.4 V		2.4 >				" E4	4		=
1	56 " GND 5.5 V GND CND GND CND GND	1	2.4 \ \ 2.4 \		2.4.5 V 4.5				 E5	D.		*
1	57 CND GND	HAZ GND	2.5 > 4.2 > 4.2 > 4.2		V 4.2				"			"
1	59 5.5 V GND 5.5 V GND 5.5 V GND GN	Section Sect	2.4 V V 2.4 V		V V V							*
Fig.	58 5.5 V 5.		2.4 V		V 4.2				. =7	7		
1	59 55 V GND GND <td> HH2</td> <td>2.4 V</td> <td></td> <td>> 4.</td> <td></td> <td>></td> <td>> 4.2</td> <td></td> <td>80</td> <td></td> <td>=</td>	HH2	2.4 V		> 4.		>	> 4.2		80		=
No. No.	60	Head of the color of the colo	2.4 V V 2.4 V		V 4.2	> 4 > 4			, EB	6		3
1	62 GND 65V 55V 6ND	Harry Gentle Ge	2.4 V		> 4.2							n n
No. No.	63 GND 6.55 GND 6.50	HH2	2.4 V							2 :		*
High Fig.	64 65V GND GND GND 24V	I I I I I I I I I I	2.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						, -			-
Incomplete and confidence and limited as subgroups to except the feets, terminal conditions and limited as subgroup to except to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets, terminal conditions and limits as subgroup to except the feets.	64 " " GND	I	2.4 V V 2.4 V	>					 E13	2		
1	64 " GND	I	> 4.5				_		E13	3		_
Introduction Fig.	66 GND	IHA2							E ₁ ,	4		3
1 1 1 2 2 2 2 2 2	66 GND GND GND 55 V GND 67 GND 55 V GND GND 68 GND GND 68 GND GND 68 GND	IIII-2	V 5. V ON						" E₁ŧ	5		u
Color Colo	67 GND 670 6.5 V GND 680 6.5 V GND 690 690 690 690 690 690 690 690 690 690	68 GND 5.5 V GND GND 5.5 V GND GND 5.5 V GND GND 5.5 V GND	2.5 V ON						9 "	(D	1	00
Color Colo	68 GND 65V GND GND 71 GND 71 GND 71 GND 71 GND 71 GND 71 GND GND 71 GND GND 72 GND GND 65V GND	Section Sect	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-			۲,	_		3
Carbon C	69 5.5 V GND GND GND GND GND F. F. C.	1	ON5 V 5.	_					щ щ			z z
1	70 GND	1	ON5 V 3:						O "			*
1	71 6.5 V 6.5 V GND 6.5 V GND 7.5 V GND 7.5 V GND 7.5 V GND 7.5 V GND 6.5 V GND 6.5 V GND 6.5 V GND 7.5 V GND 6.5 V G	1,	75. OND							_		n
1	72	72							я П			ı,
1	73	7.7 GND 5.5 V GND 6.5 V GND 7.7 GND 6.5 V							,			*
1	74 " GND 5.5 V GND 75 V GND 77	Color Colo	> 5						, 1			3
1	75 GND 6.5 V GND 75 V GND 75 V GND 75 V GND 6.5 V GND 6.	1							" E3	N 6		,
1	75 " 55V GND 55V GND 6ND 6ND 6ND 6ND 6ND 6ND 6ND 6ND 6ND 6	1,	\ 5.						, EA	. 4		u u
1	77	Charles	QNO						E5	· 10		"
1	78	Carlo Carl	.5 \						. Ee	9		,
1	79 5.5 V 5.5 V 6.5 S V 6.0 C C C C C C C C C C C C C C C C C C C	## 100 CMD 100	ONS						" E7			n n
1	80	80 5.5 V GND 6.5 V 6.5 V GND 6.5 V	.5 \					2.5 <	 E8	8		3
Same tests, terminal conditions and limits as subgroup 1, exact part at the stack of the stack	81	S	QNO				2.5 V		 E9	6		3
Same tests, terminal conditions and limits as subgroup 1, except in a subgroup 2, except in a subgroup 3, except in a subgroup 2, except in a subgroup 3, except in a subgroup 4, except in a subgro	Signature Sign	S	> : :			5.5 \			 E ₁ (0		
Same tests, terminal conditions and limits as subgroup 1, except TC = -55°C and V _{IC} are minal conditions and limits as subgroup 1, except TC = -55°C and V _{IC} are omitted.	84	S		i	2.5					_		
1	85 " GND GND 5.5 V 5.5 V 8.6 CND GND GND 5.5 V 8.8 E.5 V 8.6 CND GND GND GND GND GND GND GND GND GND G									12		
" " 86 " GND GND 5.5 V " E15 " E15	86 " GND GND GND " " E14 87 GND GND GND GND " " E15 88 5.5 V 5.5 V 5.5 V C and V _{IC} are omitted. 98 5.5 V 5.5 V 5.5 V C and V _{IC} are omitted.	S	, r	>						e :		3
I _{OS} 3011 87 GND GND GND GND GND GND GND GND CND CND </td <td>87 GND GND GND GND W -20 88 5.5 V 5.5 V 5.5 V 1.5 V " V_{CC} ons and limits as subgroup 1, except T_C = 125°C and V_{IC} are omitted. " V_{CC} "</td> <td>l_{OS} 3011 87 GND GND GND I_{CC} 3005 88 5.5 V 5.5 V</td> <td>5.5 \</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4 Ľ</td> <td></td> <td>*</td>	87 GND GND GND GND W -20 88 5.5 V 5.5 V 5.5 V 1.5 V " V _{CC} ons and limits as subgroup 1, except T _C = 125°C and V _{IC} are omitted. " V _{CC} "	l _{OS} 3011 87 GND GND GND I _{CC} 3005 88 5.5 V 5.5 V	5.5 \							4 Ľ		*
l _{CC} 3005 88 5.5 V 5.5 V 5.5 V 68 88 5.5 V 6 68 88 5.5 V 6 68 88 6.5 V 6 69 68 89 6.5 V 6 69 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69	88 5.5 V 5.5 V 5.5 V	I _{CC} 3005 88 5.5 V 5.5 V	QNS						Α		-	-
Same tests, terminal conditions and limits as subgroup 1, except $T_C = 125^{\circ}C$ and V_{IC} are omitted. Same tests, terminal conditions and limits as subgroup 1, except $T_C = -55^{\circ}C$ and V_{IC} are omitted.	ons and limits as subgroup 1, except T_C = 125°C and V_{IC} are omitted. In small limits as subgroup 1, except T_C = -55°C and V_{IC} are omitted.		.5 V						, ,	Ç,	9	
Same tests, terminal conditions and limits as subgroup	ons and limits as subgroup	Same tests terminal conditions are similar as subary	o = 105°C and Vic are omitted				-	-		-	-	-
	Same tests, terminal conditions and limits as subgroup 1, except T _C = -55°C and V _{IC} are omitted.	Carrie tests, terrinial conditions and innes as subgroup	C = 123 Cand vic ale onnued.									
	المراجعين المراج	Same tests, terminal conditions and limits as subgroup 1, except $T_C = -55^{\circ}C$ and V_{IC} are omitted.	$_{\rm C}$ = -55°C and $\rm V_{IC}$ are omitted.									

26

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	Unit		20	2 =	2 2		2 =		SU	ns
Test limits	Max		37	5 =		. 6	n		34	28
Tes	Min	ેંગ	α) =	8 3	: c	0 =		. 9	9
v.	terminal		W ot A	B to W	C to W	A 3	B to W	C to W	× × ×	G to W
M			-		Ö	-		5 6	9 5	G
12	GND	Q 0	GND	, ,			3 "		3	3
1	۵	□ ::::::::::	CIND	, ,	* 3	≥ 2	3 5 7	3	GND	GND
10	*	<u> </u>	ΕİC)) =	2 2	. <u>F</u>	5 =		OUT	DOUT
6	ŋ	α	CINE	, ,	2 2] 		Z	Z
8	E ₀	ш ∢	GND)	3 3	: 2	<u> </u>		5.0 V	5.0 V
7	E1	m <	20.7				> 0.0			
9	E2	ω ∢		5.0 V			5.0 V			
2	E ₃	ω ∢								
4	E4	ω ∢			5.0 V			5.0 V		
е	Es	ш ∢								
7	Ee	ω ∢								
-	E7	D	;							
Cases J, K, Z	Test No.	Truth 3014 89 test	122	123	124	125	127	128	130	131
MIL- STD-883	method	3014	3003	(Fig 4)		: =	=	3 3	: 3	ä
Symbol	5	Truth table test test	,	Ť.	3 3		. FH	3 3	tour?	1 H
Subaroup		T _C = 25°C		2	3 :	: :	=	3 3		29

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

_		Т																																_,						1				_	_
ø	Unit																																			ns	ä	3	n	SU	ä	ä	я	SU	SU
Test limits	Мах																																			37	×	3	3	39	¥	z	n	34	28
'	Min																3/	i																	•	80	ä	×	и	8	n	ä	ш	9	9
M	terminal	_															_	_	_														_	,		A to W	B to W	C to W	D to W	A to W	B to W	C to W	D to W	G to W	G to W
24	Vcc	4.5 V	×	¥ :	: :		=	3	¥	×	я	×	×	×	п	n	3	¥	я	я	¥	×	ä	×	×	×	×	n	ä	я	×	я	ä	и		5.0 V	¥	3	3	5.0 V	27	×	и	"	я
23	E ₈																		ш	۱ ∢	:														•				5.0 V				5.0 V		
22	E9																				α	۵ ۵	(•										
21	E ₁₀																						α	۵ ۵	(
20	E ₁₁																								α	1 4	:																		
19	E ₁₂																										α	>	C																
18	E ₁₃																												α	1 ∢															
17	E ₁₄																														В	∢			•										
16	E ₁₅																																В	A											
15	∢		В	ω.	∢ <	∢	ш	ш	⋖	∢	В	В	∢	∢	В	Ф	<	<	<u> </u>	ι α	1 4	< ⊲	(α	ממ	۵ ۵	. ⊲	(11	ם	۵ ۵	< ∢	В	В	∢	A		Z	GND	ä	3	Z	GND	ä	3	GND	GND
14	В		В		: :		∢ :	=	3	n	В	n	3	n	۷	"	n	n	В	"	"	n	٥	۲ ۽	n	"	α) =	n	n	۷	"	3	n		GND	z	GND	GND	GND	Z	GND	GND	GNĐ	GND
13	С		В		: :		=	3	¥	n	∢	n	¥	¥	n	n	*	я	В	۱ ۳	¥	"	n	*	"	¥	۵	(=	n	n	n	n	ä	п	c = -55°C.	GND	GND	Z	GND	GND	GND	Z	GND	GNĐ	GND
Cases J, K, Z	Test No.	68	06	91	92	50	94	92	96	26	86	66	100	101	102	103	104	105	106	107	108	90 5	5 7	- -	17 -	1 7	21.7	 	116	117	118	119	120	121	Repeat subgroup 7 at $T_C = 125^{\circ}C$ and $T_C = -55^{\circ}C$.	122	123	124	125	126	127	128	129	130	131
MIL- STD-883	method	3014	3	а :			=	*	3	3	3	*	3	3	3	3	3	2	3	3	3	3	ä	3	3	*	3	3	3	*	3	*	3	я	group 7 at T _C	3003	(Fig 4)	3	3	=		3	3	n	ä
lodmyS	5	Truth	table	test	: :		=	=	3	3	3	×	3	3	ä	3	3	3	3	3	3	×	я	2	×	×	3	3	3	3	3	ä	3	11	Repeat sut	tPHL1	3	3	*	tp.H1		n	"	tPHL2	tPLH2
diopolis	5000	7	$T_{\rm C} = 25^{\circ}{\rm C}$	з :	: :	: :	=	*	3	4	3	*	4	4	4	3	¥	2	3	*	*	3	3	2	3	3	*	3	4	8	3	*	4	n	8	6	T _C = 25°C	*	*		=	4	*	n	u

See note at end of device type 01

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	. =																																				T	
its	Unit	ns	3 3		3	3	3	3	=	2 2	: :	: 3	4	3	3	ns	2	=			3	и	ä	ä	3	3 :	= :		3	su	3	= =	•	=	3	: 3	us	ns
Test limits	Мах	18	3 3	: :	3	¥	ä	ä	ä	3 3	: :	: :	×	¥	¥	24	ä	3	3 3	: :	¥	ä	n	¥	¥	z :		: =	3	40	ä			43	=	: :	37	32
	Min	က	з :	: =	3	×	3	=	=	3 3	: :	: 3	=	3	ä	3	ä	=	3 3	: :	ä	×	=	ä	ä	= :	: :		=	8	=	: :		=			9	9
M	terminal	E ₀ to W	E ₁ to W	E ₂ to W	E3 to W	E, to W	E ₆ to W	E ₇ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E12 to w	F13 to W	E ₁₅ to W	E ₀ to W	E ₁ to W	E ₂ to W	E ₃ to W	E ₄ to W	E5 to W	E, to W	E _s to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₅ to W	A to W	B to W	C to W	D to W	A to W	B to W	C to W	G to W	G to W
12	GND	GND	3 3	: 3	3	z	ä	2	3	2 3	: :	: :	ä	ä	3	я	3	z	3 3	: :	z	3	n	3	3	= :	: :	. 3	×	я	3			z	3	: 3	и	и
1	٥	GND	з :		:	=	ä	3	5.0 V	z :	: :		¥	ä	ä	GND	3	3	= :		z	3	5.0 V	ä	=	= :	: :	: :	3	GND	3	* :	Z	GND	=	: <u>Z</u>	GND	GND
10	*	DUT	3 3	. 4	ä	3	ä	3	3	3 3			ä	3	3	DUT	3	z	a :		3	ä	ä	8	3	3 1	: :		3	OUT	ä			z	=	: 3	OUT	OUT
6	ŋ	GND	3 3	: 3	3	*	ä	3	3	2 :	: :	: :	z	¥	×	3	*	3	3 3	: :	×	ä	×	3	3	= :	: :	: 3	3	GND	ä	3 3		3	3	: :	Z	Z
80	Б.	Z														Z														GND	3	2 2		z	3	: 3	5.0 V	5.0 V
7	Ę		z														z													5.0 V								
9	E ₂		:	z														Z													5.0 V				5.0 V			
2	E ₃			2	<u> </u>														Z																			
4	4				z	:														z												5.0 V				2.0 V		
ю	Es					Z														-	≧																	
2	E ₆						z														Z	<u> </u>																
1	E7							Z														Z																
Ä,	1	+																															ı					
Cases J, K, Z	Test No.	132	133	134 134	136	137	138	139	140	141	142	143 8 4	+ + + + +	146	147	148	149	150	151	152	557	155	156	157	158	159	160	161 162	163	164	165	166	167	168	169	170	172	173
MIL- Cases Z	1		(Fig 4) 133	134	136	137	138	139	140	141	247	: . 143	* 44 7	. 146	147	148	. 149	. 150	151	152	152	155	156	157		159	160		163	164	165	166	167	168	169	170	172	" 173
	method		(Fig 4)	134	136	137	138	. 139	. 140	141		: : :		3 47		t _{PLH3} " 148	3	" 150	151	152	193		, 156	" 157	. 158	159	160	101		tPHL1 " 164		166	. 167	tPLH1 " 168	3	170	tpHL2 " 172	ä

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

		П																		1																								\neg		
s	Unit	us	3	35	3	ä	3	3	:	3	3	ä	n	"	"	25	:	ä	3	ns	ä	я	ä	ä	3	1	:	ä	3	ä	ä	я	ä	ä	ä	3	su	ä	ä	"	"	*	¥	я	ns	SU
Test limits	Max	18		3	3	=	=	3		×	3	×	3	=	ä	3		3	ä	24		3	=	×	3	3		=	3	3	ä	ä	ä	ä	3	3	40	ä	ä	=	43	3	:	ä	37	32
	Min	3	3	3	3	3	3	3		3	3	ä	n	ä	я	3		4	3	3		3	ä	*	3			3	3	3	3	ä	3	ä	*	3	8	ä	ä	3	n	*	3	3	9	9
W av	terminal	Fo to W	E, to W	F. to W	F, to W	, to	5 4 5	E5 to w	E ₆ to W	E ₇ to W	E ₈ to W	E _o to W	F ₁₀ to W	1 to W	2 4	E12 to w	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	Eo to W	F, to W	F, 10 W	E2 to W	, to w	1 5 10 VV	E5 to w	E ₆ to W	E ₇ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	A to W	B to W	C to W	D to W	A to W	B to W	C to W	D to W	G to W	G to W
24	Vcc	5.0 V	3	3	3	z	3	3		3	3	ä	×	3	3	3		3	ä	n	3	*	ä	3	3			3	3	3	3	×	3	ä	3	3	n	ä	ä	3	n	3	3	n	3	=
23	E ₈										z																		z											5.0 V				5.0 V		_
22	E ₉	,										z																		z														_		_
21	E ₁₀	:											z																		z													_		
50	E11													z																		z														
2		-												_																		_														
19	E ₁₂														2	=																	Z													
18	E ₁₃															3	Z																	Z												
17	E ₁₄																	Z																	Z											
16	E ₁₅																		Z																	Z										
15	۷	GND	5.0 V	GNB	5.0 \	CNC	2 2	> 0.0	GND	2.0 \	GND	5.0 V	GND	> 0			2.0 <	GND	5.0 V	GND	5.0 \	GND	> 0	י בו בו		20.0	GND	2.0 \	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	Z	GND	GND	GND	Z	GND	GND	GND	GND	GND
41	В	GND	GND	20 \	5.0 V	CNC		פואס ל	2.0 <	2.0 V	GND	GND	5.0 V	> 0	200	בו בי	O CENT	5.0 V	5.0 V	GND	GND	20.0	> 0 5	ָר באַ באַ		2 2 2	2.0 \	2.0 \	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	Z	GND	GND	GND	Z	GND	GND	GND	GND
13	O	GND	=	3	ä	70.5	· ·	3		×	GND	ä	ä	ä	>	> =		×	×	GND	4	я	ä	> 0 2	> =			3	GND	×	ä	ä	5.0 V	×	ä	3	GND	GND	z	GND	GND	GND	z	GND	GND	GND
Cases J, K, Z	Test No.	132	133	134	135	136	7 2 2	13/	138	139	140	141	142	143	7 7	<u> </u>	145	146	147	148	149	150	151	15.2	201	2 :	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173
MIL- STD-883	method	3003	(Fig 4)		3	ä	я	3		2	n	я	я	3	3	3		3	3	n	3	3	я	z	3			я	я	3	я	3	я	3	ä	ä	3	3	3	3	3	3	*	я	3	2
lod my S.		4	ř 2 =	ä	3	*	3	3		¥	n n	"	n	2	3	3		¥	ä	ţ,	2 *	3	2	*	*	ì		,	3	*	3	ä	3	×	*	3	tPHL1	*	×	2	tPLH1	į	4	×	tPHL2	to us
anozodnis	5	o	Tc = 25°C	;	*	n	3	"	:	3	n	n	n	2	3	*	:	3	*	3	3	ä	×	3	×	3		×	n	"	*	n	n	ä	я	я	10	T _C = 125°C	3	=	*	"	4	n	n	3

See note at end of device type 01

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	ı —																																	
ω.	Unit	us	3	3	ä	ä	*	ä	*	ä	ä	3	3	3	ä	*	3	su	ä	*	ä	ä	3	*	ä	*	*	*	*	ä	3	*	3	
Test limits	Max	23	=	=	z	¥	3	¥	=	×	3	=	3	3	3	3	=	30	×	=	=	=	¥	=	z	3	=	3	¥	×	3	3	3	
	Min	က	¥	¥	¥	×	ä	×	3	¥	n	¥	ä	ä	n	ä	×	3	¥	3	¥	¥	×	×	¥	3	ä	3	¥	¥	ä	×	3	
Meas	terminal	E ₀ to W	E ₁ to W	E ₂ to W	E ₃ to W	E ₄ to W	E ₅ to W	E _e to W	E ₇ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	E ₀ to W	E ₁ to W	E ₂ to W	E ₃ to W	E ₄ to W	E ₅ to W	E ₆ to W	E ₂ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	
12	GND	GND	3	3	3	ä	3	z	3	ä	ä	ä	3	ä	ä	я	3	=	ä	3	ä	ä	3	3	3	3	3	3	ä	ä	ä	ä	3	
7	٥	GND	3	3	z	z	3	3	3	5.0 V	ä	ä	3	ä	ä	ä	3	GND	z	3	ä	ä	3	ä	z	5.0 V	3	3	ä	z	ä	ä	3	
10	8	OUT	3	3	3	3	4	×	3	=	3	3	3	3	3	4	3	=	=	3	3	3	2	=	3	3	3	3	3	=	3	3	3	
6	ŋ	GND	3	3	3	×	3	3	3	3	я	ä	3	ä	я	ä	3	=	3	3	ä	ä	3	3	3	3	3	3	ä	3	ä	3	3	
8	E ₀	z																Z																
7	E1		Z																z															
9	E ₂			z																z														
2	E3				Z																Z													
4	E4					Z																z												5°C.
က	Es						Z																Z											3- = J
2	Ee							z																z										n 10 exc
~	E7								z																z									Salbaron
Cases J, K, Z	Test No.	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	Same tests: terminal conditions and limits as subaroup 10 except $T_C = -55$ °C.
	method	3003	(Fig 4)	3	3	я	3	ä	*	3	3	3	я	3	3	ä	я		=	*	3	3	*	3	3	ä	3	ä	*	3	3	ä	я	terminal condit
Symbol	6	tPHL3	3	3	¥	×	ä	ä	3	=	z	2	×	3	z	3	ä	фГНЗ	=	3	2	2	=	3	¥	3	3	3	¥	=	3	2	*	Same tests
Subdroup	5	10	T _C = 125°C	*	*	,	n	3	4	*	=	2	*	3	=	я	я		=	3	2	3	3	3	3	3	3	3	3	3	3	2	я	1

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	Unit	su	n	n	3	n	n	n	n	n	n	ä	ä	n	n	ä	ш	su	3	*	n	n	ä	3	ä	n	n	"	¥	n	n	n	п	
Test limits	Max	23	3	3	3	3	3	3	3	3	3	3	3	3	3	3	11	30	3	3	3	×	3	3	3	3	3	3	ä	3	3	3	11	
	Min	3	3	3	¥	3	ä	n	3	3	3	3	ä	ä	3	3	n.	3	=	3	3	3	3	3	3	3	3	3	ä	3	*	3	n.	
Meas	terminal	E ₀ to W	E ₁ to W	E ₂ to W	E ₃ to W	E ₄ to W	E ₅ to W	E ₆ to W	E ₇ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	E ₀ to W	E ₁ to W	E ₂ to W	E ₃ to W	E ₄ to W	E ₅ to W	E ₆ to W	E ₇ to W	E ₈ to W	E ₉ to W	E ₁₀ to W	E ₁₁ to W	E ₁₂ to W	E ₁₃ to W	E ₁₄ to W	E ₁₅ to W	
24	Vcc	2.0 V	"	3	3	×	ä	×	n	×	ä	*	ä	ä	n	3	п		*	3	×	×	*	ä	3	n	n	×	"	×	"	×	п	
23	E8									Z																Z								
22	E9										Z																Z							
21	E ₁₀											Z																Z						
20	E11												Z																Z					
19	E ₁₂													z																Z				
18	E13														Z																Z			
17	E ₁₄															z																Z		
16	E ₁₅																Z																Z	55°C.
15	٧	GND	5.0 V	GND	2.0 \	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	sept T _C = -
14	В	GND	GND	2.0 \	2.0 \	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	oup 10 exc
13	С	GND	n	n	¥	5.0 V	n	n	п	GND	n	×	n	5.0 V	п	я	и	GND	×	×	я	5.0 V	×	n	я	GND	n	n	×	5.0 V	n	я	и	s as subgr
Cases J, K, Z	Test No.	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	Same tests, terminal conditions and limits as subgroup 10 except $T_{\rm C}$ = -55°C.
MIL- STD-883	method	3003	(Fig 4)	я	×	ä	ä	3	ä	ä	×	я	n	ä	ä	ä	ш	=	=	3	ä	и	я	и	ä	ä	3	3	×	ä	3	ä	ш	terminal con
Svmbol	<u> </u>	фнгз	и	z	ä	×	ä	3	×	×	я	3	×	ä	×	z	и	th1H3	3	3	×	n	3	и	z	×	×	=	3	×	3	×	и	Same tests,
Subaroup		10	$T_{\rm C} = 125^{\circ}{\rm C}$	и	×	×	×	z	×	×	×	×	я	ä	3	z	и			3	ä	3	×	и	z	×	3	25	*	ä	3	×	ш	11

F1⊘1⊗1

 I_{1L} minimum limit for CKT E is -0.6 mA. A = 3.0 V minimum, B = 0.0 V or GND. H > 1.5 V; L < 1.5 V. Only attributes data is required for subgroups 7 and 8.

111
(11111111111111111111111111111111111111
-
-
4
-
1
17
,
7:1
F

_																																												
ts	Unit	>	3	3	n	"	3	3	3	3	3	:	:	3	3	3	3	3	<	<u> </u>		3	3	3	3	3	3	3	3	3	3	μĄ	3	3	3	3	3	3		=	3	3	3	n
Test limits	Max			0.4	0.4	-1.5	3	n	n	я	3	,	:	n	n	n	3	3	0	0.	:	n	3	я	n	3	3	3	3	3	n	40	n	n	7	"	я	n		=	3	я	ä	п
	Min	2.4	2.4																7	٠. ٻ	:	n	n	п	n	n	n	31	я	3	n													
	Meas. terminal	>	>	>	Μ	D ₀	<u>0</u>	D ₂	ے ا	3 6	2 0	5	°C	D ₇	Q	٥	. α	a C) (. פ	⋖	В	O	۵	, 5	- £	2 6	2 0	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ရှိ ရ	5	G	∢	В	O	ے د	3 2	5 1	D ₂	ص ص	D ₄	Ds	De	D ₇
16	Vcc		3	3	п	n	3	я	2	3	3		:	3	3	3	3	ä	7 2 2	2.5	:	3	3	3	2	3	3	3	3	3	ä	n	3	ä	3	"	n	n		:	3	3	3	п
15	>	-0.8 mA		16 mA																																								
14	8		-0.8 mA		16 mA																																							
13 14	O	V 8.0		2.0 V	0.8 V													-12 mA	C	2.5	:	3	0.4 V	GND	ä	3	3	5.5 V	я	3	ä	GND	GND	GND	2.4 V	> 2		n	. :	=	GND	3	3	"
12	В	+															-12 mA					0.4 V			GND	5.5 \	5.5 \			5.5 V	5.5 V	-	GND					2 6	G.N.D			5.5 V	GND	GND
=	⋖	+		2.0 V	_											-12 mA			+						5.5 V							-	2.4 V											GND
9	O	+		2.0 V											-12 mA				+		_	7	3	3	7	3	3	3	3	3	я	1	5.5 V		3	3	я	ä		=	3	3	3	п
2 3 4 5 6 7 8 9 10 11 12	D7													-12 mA																	0.4 V													2.4 V
8	GND	GND	n	ä	77	"	'n	n	n	я	3		:	3	"	"	3	n	n		:	n	3	n	n	7	7	3	3	3	я	n	"	ä	n	n	3	"		=	3	"	3	"
7	De												-12 mA																	0.4 \													2.4 V	
9	D5										2	¥II 7 I -																	0.4 V													2.4 V		
5	D4									12 m	1																	0.4 \													2.4 V			
4	D ₃								-12 mA		<u> </u>																V 4.0													2.4 \				
3	D2							-12 mA																		0.4 \												;	> 4.2					
2	<u>0</u>						-12 mA																		0.4 V												2 4 V	> t.						
_	D ₀	2.0 V			2.0 V	-12 mA													İ					0.4 V												247	i							
Cases E, F	Test No.	-	2	ဇ	4	2	9	7	00	σ	» (2 :	11	12	13	4	. . .	5 4	5 1	<u> </u>	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	8 %	5 6	32	36	37	38	39	. 40
MIL-	STD-883 method	3006	3006	3007	3007														0000	3008	:	n	3	7	n	3	3	3	3	3	я	3010	"	я	"	"	я	3		=	3	3	3	TI TI
-		Vон	Vон	VoL	Vol	VIC	3	n	n	я	3			3	n	n	3	n	T.	= -		n	3	n	n	3	3	3	3	3	n	Ē	×	ņ	ä	ä	n	n		=	3	n	3	n
	Subgroup Symbol	-	$T_C = 25^{\circ}C$	я	3	3	31	2	3	3	3	:		3	"	"	3	я	3	3	ı	"	31	3	"	3	3	з	3	з	я	3	3	я	3	3	я	3		=	3	3	3	n

TABLE III. Group A inspection for device type 02- Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

Test limits	Max Unit	100 μА		"	n n	n n	n n	n	"	"	2	"	"	-120	-120 mA	48 mA	-																		_
	Ā													-20	-20												2/								
2	Meas. terminal	ŋ	∢	В	ပ	۵	, <u>c</u>	6	۔ 2	, Q		De	0	>	≷	VCC			_	_						_	<u> </u>	_						_	-
16	Vcc	5.5 V	3	3	3	3	3	я	я	3	3	3	3	=	3	n			4.5 V	3	3	3	я	я	я	3	3	3	3	3	я	3	3	3	
15	>														GND				٦	_	I	_	I	_	I	_	I	_	I	_	I	_	I	_	
14	>													GND					H <u>2</u> /	I	_	I	_	I	_	I	_	I	_	I	_	I	_	I	
13	O	GND	"	3	5.5 V	3	3	я	3	GND	3	а	а	=		=				В	3	3	3	3	3	я	я	∢	я	я	я	3	3	3	,,
12	В	GND	GND	5.5 V	GND	5.5 V	5.5 V	GND	GND	5.5 V	5.5 V	GND		=		=				В	3	3	3	∢	ä	3	я	В	3	3	3	∢	3	3	
11	∢	GND	5.5 V	GND	GND	5.5 V	GND	5.5 V	GND	5.5 V	GND	5.5 V	GND	=	-	=				В	В	∢	∢	В	В	∢	∢	В	В	∢	∢	В	В	⋖	
10	Ŋ	5.5 V	GND	3	ä	ä	ä	n	ä	ä	ä	n	n	5.5 V	GND	GND			A 1/	В	ä	n	n	n	ä	n	n	3	7	n	3	ä	ä	3	_
9	D ₇												5.5 V	GND			nitted.	nitted.																В	
8	GND	GND	3	3	3	3	3	n	я	3	3	3	3	=	3	n	s are omitted	s are omitted	GND	3	3	3	я	я	ä	3	я	3	3	3	3	3	я	3	
7	D_6											5.5 V		GND	-	=	V _{IC} test	and V _{IC} tests														В	∢		
9	D5										5.5 V			GND		=	= 125°C and V _{IC} tests	-55°C and												В	∢				
2	D4									5.5 V				GND	=	=	L C	T _C =										В	∢						
4	D3								5.5 V					GND		=	, except	1, except								В	∢								
3	D2							5.5 V						GND		=	bgroup 1	bgroup						В	∢										
2	<u>Ω</u>		_	_			5.5 V							GND			its as su	its as sn				В	∢												_
1	D ₀					5.5 V								GND	5.5 V	5.5 V	and lim	and lim		В	۷														
Cases E, F	Test No.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	22	Same tests, terminal conditions and limits as subgroup 1,	Same tests, terminal conditions and limits as subgroup	26	22	28	29	09	61	62	63	64	65	99	29	89	69	70	71	
MIL-	STD-883 method	3010	я	3	3	3	3	я	3	3	3	я	я	3011	3011	3005	sts, termin	sts, termin																	
	Symbol	IH2	я	3	3	3	3	ä	3	3	3	а	а	sol	los	221	Same te	Same te	Truth	table	test	3	я	я	3	а	я	3	а	а	3	3	3	3	_
Subgroup		-	T _C = 25°C	3	3	3	3	я	3	3	3	2	2	=	=	=	2	3	7	$T_C = 25^{\circ}C$	3	я	n	я	n	n	я	3	2	n	3	7	n	3	_

See note at end of device type 02.

TABLE III. Group A inspection for device type 02- Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	Unit	su	3	n	"	3	3	'n	3	3	31	3	ä	n	3	я	3	n	3	3	3	4	3	а	3	-	3	3	я	3	3	"	z .
Test limits	Мах	32	з	n	29	я	3	40	з	3	39	a a	3	28	24	37	35	20	а	з	3	3	3	я	з	17	3	3	3	3	3	3	и
Te	Min	9	3	73	n	я	3	n	3	3	n	я	я		9		80	3	3	3	3	3	3	3	3	=	z	3	я	3	3	3	я
	Meas. terminal	A to W	B to W	C to W	A to W	B to W	C to W	A to Y	B to Y	C to Y	A to Y	B to Y	C to Y	G to W	G to W	G to Y	G to Y	D _o to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W	D _o to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W
16	Vcc	2.0 V		n	n	n	3	"	3	3	n	n	я	"	3	я	3	"	3	3	3	3	3	3	3	-	3	3	n	3	3	3	n
15	>							OUT	3	3	n	n	3			OUT	OUT																
14	W	OUT	3	п	n	я	я							OUT	OUT			OUT	3	3	3	я	3	3	3	=	3	n n	я	3	я	3	я
13	O	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	3	3	з	GND	з	з	3	5.0 V	3	3	з	GND	3	3	3	5.0 V	3	3	n
12	В	GND	Z	GND	GND	z	GND	GND	Z	GND	GND	z	GND	GND	3	я	я	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V				5.0 V	5.0 V
11	∢	Z	GND	GND	Z	GND	GND	Z			Z	GND	GND			3	3				5.0 V				5.0 V						5.0 V		
10		GND		п	n	3	3	n	4	3	n	3	я	Z	3	я	4	GND	3	3	3	3	3	3	3	-	3	3	3	3	3	3	я
6	D ₇																								z								Z
8	GND	GND	3	п	"	3	3	n	3	3	n	7	я	n	3	я	3	n	3	3	3	я	3	3	3	=	3	3	7	3	3	3	u
7) Pe	_																						z								z	
9	Ds																						Z								z		
2	D4 [5.0 V			5.0 V			5.0 V			5.0 V									z								Z			
4	D3 [5.			5			5			5								z	_							z	_			
	D ₂		5.0 V			5.0 V			5.0 V			5.0 V								_	_							7	_				
3			2.0		^	5.0		^	2.0		>	5.0							_	∠							_						
2		D 5.0 V			5.0 V			5.0 V			5.0 V			>					Z								Z						
F 1	Do	GND	3	"	"	3	3	"	3	3	n	я	3	5.0 V	3	3	3	Z								Z							
Cases E,	Test No.	73	74	75	9/	77	78	42	80	81	82	83	8	85	98	87	88	88	06	91	95	93	94	92	96	26	86	66	100	101	102	103	104
MIL-	S1D-883 method	3003	(Fig 4)	n	n	3	3	n	3	3	n	n	n	n	3	ä	3	n	3	3	3	3	3	3	3	=	=	3	3	3	3	3	n
	Symbol	tPHL1		n	tPLH1	я	я	tPHL2	"	"	tPLH2	я	я	tPHL3	фГНЗ	tPHL4	tPLH4	tPHL5	3	3	"	я	3	3	3	tPLH5	3	n	я	я	n	3	я
	Subgroup	6	$T_C = 25^{\circ}C$	я	я	я	я	3	ä	n	ä	n	n	n	я	ä	я	ä	ä	3	я	я	3	3	3	=	=	n	n	3	3	3	n

See note at end of device type 02.

_:	
Ď	
3	
⋷	
₽	
₽	
Continue	
ďΙ	
0	
Φ	
Q	
Group A inspection for device type 02-	۰
Φ	
.Ö	
>	
e	
ō	
Ψ.	
드	
∺	
Ö	
ě	
Š	
_⊆	
7	
4	
윽	
ನ	
ž	
0	
\equiv	
111	
=	
M	
TABLE III.	
\vdash	

2 3 4 5	2 3 4 5 6	3 4 5 6	2	5 6	9		7	8	6	10	1	12	13	41	15	16	Meas.		Test limits	s
Test No.	°	۵	D2	D ₃	D ₄	D ₅	D_6	GND	D ₇	ഗ	⋖	Ф	ပ	≯	>	Vcc	terminal	Min	Max	Unit
105	Ζ							GND		GND	GND	GND	GND		OUT	5.0 V		9	59	SU
106		Z						3		3	5.0 V	GND	3		3	3	D ₁ to Y	я	я	ı
107			Z					3		3	GND	2.0 \	3		3	3	D ₂ to Y	3	3	3
108				Z				3		я	5.0 V	2.0 \	3		ı	3	D ₃ to Y	"	ä	n
109					Z			3		3	GND	GND	5.0 V		n	3	D ₄ to Y	n	3	n
110						Z		3		3	5.0 V	GND	я		я	3	D ₅ to Y	ä	я	3
7							z	я		ä	GND	5.0 V	3		ä	3	D ₆ to Y	3	я	3
112								3	Z	3	5.0 V		3		ı	31	D ₇ to Y	3	3	3
113	Z							3		n	GND	GND	GND		n	я	Do to Y	9	59	n
114		Z						3		3	5.0 V	GND	я		я	3	D ₁ to Y	u	я	3
115			Z					3		2	GND	5.0 V	7		n	3	D ₂ to Y	"	3	ä
116				Z				3		3	5.0 V	5.0 V	3		n	3	D ₃ to Y	"	n	n
117					z			3		n	GND	GND	5.0 V		n	3	D ₄ to Y	7	3	n
118						Z		3		3	5.0 V	GND	n		я	3	D ₅ to Y	n	ä	3
119							z	3		3	GND	5.0 V	ä		n	"	D ₆ to Y	3	3	3
120								3	Z	3	5.0 V	5.0 V	3		ä	3	D ₇ to Y	3	3	3
121	GND	5.0 V						п		n	Z	GND	GND	OUT		n	A to W	9	40	n
122	"		5.0 V					3		2	GND	Z	GND	3		3	B to W	я	3	n
123	n				5.0 V			п		n	GND	GND	Z	п		n	C to W	n	n	"
124	n	5.0 V						n		n	Z	GND	GND	n		n	A to W	n	38	n
125	3		5.0 V					3		3	GND	Z	GND	з		3	B to W	3	3	3
126	n				5.0 V			п		n	GND	GND	Z	n		n	C to W	n	п	"
127	n	5.0 V						n		n	Z	GND	GND		TUO	n	A to Y	8	49	"
128	3		5.0 V					3		3	GND	Z	GND		ı	3	B to Y	3	я	3
129	n				5.0 V			п		п	GND	GND	Z		n	п	C to Y	n	п	"
130	n	5.0 V						3		n	Z	GND	GND		n	я	A to Y	n	45	n
131	3		5.0 V					3		3	GND	Z	GND		я	3	B to Y	u	я	3
132	3				5.0 V			3		3	GND	GND	Z		я	3	C to Y	u	я	3
133	2.0 V							3		Z	GND	GND	GND	OUT		n	G to W	9	37	n
134	3							3		3	3	я	3	OUT		3	G to W	9	32	7
135	7							3		2	2	n	n		OUT	3	G to Y	œ	46	ı
136	п							п		п	п	п	п		OUT	п	G to Y	8	42	n
137	Z							и		GND	GND	GND	GND	OUT		n	D _o to W	3	32	n
138		Z						я		3	5.0 V	GND	3	z		3	D ₁ to W	ä	я	ä
139			Z					3		3	GND	5.0 V	3	3		3	D ₂ to W	"	3	ä
140				Z				3		я	5.0 V	5.0 V	3	3		"	D ₃ to W	3	я	3
141					Z			3		3	GND	GND	5.0 V	3		3	D ₄ to W	3	3	3
142						Z		3		3	5.0 V	GND	3	3		3	D ₅ to W	"	3	ä
143							z	з		2	GND	5.0 V	z	3		3	D ₆ to W	3	ä	ä
144								7	Z	3	20 <	20.5	3	3		3	N + 10	7	3	3

36

TABLE III. Group A inspection for device type 02- Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

_		_								_																
ts	Unit	Su	3	ı	ı	3	3	3	ı	n	3	3	я	3	3	я	"	n	3	3	3	ä	3	ä	3	
Test limits	Мах	26	з	з	з	з	з	3	з	41	3	3	з	3	3	z	n	33	3	3	з	з	3	з	з	
_	Min	3	3	"	"	я	я	3	"	9	"	"	n	3	"	"	и	n	"	3	3	n	"	n	3	
:	Meas. terminal	D _o to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W	D _o to Y	D ₁ to Y	D ₂ to Y	D ₃ to Y	D ₄ to Y	D ₅ to Y	D ₆ to Y	D ₇ to Y	D _o to Y	D ₁ to Y	D ₂ to Y	D ₃ to Y	D ₄ to Y	D ₅ to Y	D ₆ to Y	D ₇ to Y	
16	Vcc	5.0 V	3	3	3	3	3	"	3	3	3	3	я	3	я	я	n	n	3	3	3	я	я	я	3	
15	λ									OUT	3	3	3	3	3	3	n	n	3	3	3	я	3	я	3	
14	W	OUT	71	71	71	n	n	n	71																	
13	C	GND	ä	n	n	5.0 V	n	n	n	GND	n	n	n	5.0 V	n	n	п	GND	n	n	ä	5.0 V	n	n	ä	
12	В	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	
11	Α	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	
10	9	GND	ä	я	я	я	я	я	я	n	я	3	3	я	я	3	п	n	я	я	я	я	я	я	я	
6	² G								Z								Z								Z	
8	GND	GND	3	ä	ä	ä	ä	ä		n	ņ	n	n	ņ	n	n	n	n	ņ	ņ	ä	n	n	n	ä	
7	9Q							Z								Z								Z		
9	DS						Z								Z								Z			55°C.
2	D4					Z								Z								Z				ot T _A = -:
4	D3				Z								Z								Z					I0, excep
3	D2			Z								Z								Z						bgroup '
2	D1		Z								Z								Z							ts as su
-	D ₀	Z								Z								Z								and lim
Cases E, F	Test No.	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	191	162	163	164	165	166	167	168	Same tests, terminal conditions and limits as subgroup 10, except T_A = -55°C
MIL-	S1D-883 method	3003	(Fig 4)	3	3	я	я	7	3	п	я	п	я	я	я	я	и	n	я	я	3	я	я	я	3	ts, termina
	Symbol	tPLH5	3	3	3	я	я	"	3	tPHL6	n	21	я	n	я	я	n	фГН	n	n	31	я	я	я	31	Same tes
	Subgroup	10	$T_{\rm C} = 125^{\circ}{\rm C}$	3	3	n	n	n	3	3	ä	n	3	ä	ä	3	3	3	3	3	3	3	3	3	3	11

Terminal conditions (pins not designated may be H > 2 0 V or 1 < 0 8 V or open)

	Unit	>	"	3 3	n	7		3	π	7	3	3	"	,		"	z z	2	Δm		"	3	3			n	77	3	3	3	3	Αμ	,	3	3	,,	3	7	3	"	7			
Test limits				4 4		υ			_	_						_			+																								_	
Test	n Max	4	_	4.0	5 7	<u>.</u>		3	3	3	3	3	-		-	3	2	3	7		3	3	-	_	-	3	3	3	3	2	2	40	3	3	"	3	3	3	3	3	3	-		_
_	a Min	2.4	5.																7 0	5 3	2	3	n				z	3	3	3	3													4
	Meas. terminal	7	2Υ	≿ ≿	; <	∢ (n	ဂ္ဂ	5	<u>ဂ</u>	1 5		2 6	20	2C1	2C ₂	20,	2G 2G	}	(00	י ה	2 (ָ נְ	ပို	ဉ်	1C ₂	1C ₃	2C ₀	2C1	2C ₂	2C3	⋖	В	16	2G	5	5	5 5	2 2	2 6	ر د د	ZC1	2C2	2C3
16	Vcc	4.5 V	и	3 3	n	3		3	3	я	3	3	3	,	:	3	я	я	7 2 7	• •	я	3	3		=	3	3	я	3	3	3	3	ä	я	3	3	3	3	3	3	3			:
15	2G		0.8 V	707														-12 mA				> 7	4. >					GND	3	3	3				2.4 V					7 2 7)) ;	3	: :	:
14	A	0.8 V	0.8 V		4	AIII 71-													7 7 7	•			2	GND	5.5 \	GND	5.5 V	GND	5.5 V	GND	5.5 V	2.4 V				5.5 V	GND	75.5	GND	7 7 7	> (מוס ו	5.5 \	GND
13 14	2C3				`	1											-12 mA		,							_		_	-	_	0.4 V	.,					_						-	4
12	2C ₂ 2															-12 mA	÷													0.4 V	0												2.4 V	2.
11	2C ₁ 2														-12 mA	-12													0.4 V	0												> 4.2	4	_
10 1	2C ₀ 2		>										20	<u> </u>	-12													0.4 V	ò											7 7 7		, i		_
_			nA 2.0 V	Ą	1								ç	7														0.7												ò	4			
6	D 2Y	0	8 mA	16 mA	2																																							_
8	GND	A GND	"	* *	n	3		3	3	3	3	3	3		:	3	"	я	n	3	3	3	3	_	=	3	3	3	3	3	3	n	3	3	3	3	3	3	3	3	3		-	:
^	7	8 mA		16 mA				_																																				
9	1C ₀	2.0 V						-12 mA															;	0.4 \												2.4 V								
2	1C ₁								-12 mA																0.4 \												2.4 \	i						
4	1C ₂									-12 mA																0.4 V												2 4 V	i					
3	1C ₃										-12 mA																0.4 V												747	i				
2	В	0.8 V	0.8 V				-12 mA													V 4 V			2	GND	GND	5.5 V	5.5 V	GND	GND	5.5 V	5.5 V		2.4 V			5.5 V	5.5 V	CNC	ON C	7 7 7	> 1	2.0.0	GND	GND
_	1G	0.8 V		2.0 V			_					-12mA									V 4 V	·	2	ON:5	=		3							2.4 V		5.5 V	3	3	3					
Cases E, F	Test No.		2	w 4		ი (٥	7	∞	6	10			7	13	4	15	9 12	2 2	- 6	<u> </u>				22	23	24	25	26	27	28	29	30					35	99	37	ò 6	20 0	65. 65.	40
-	STD-883 method	3006	3006	3007															3000	3	я	я	3		=	3	3	я	3	я	я	3010	3	я	я	я	3	я	я	3	3		. 3	-
_	Symbol	Vон	Vон	Vol.	, OL	_ _ _ _		3	n	3	3	3	3		:	3	я	n	-	⊒"	я	n	n		=	3	3	я	3	3	3	<u>H</u>	я	я	z	z	n	n	n	я	3	3		
	Subgroup	-	$T_C = 25^{\circ}C$	3 3	3	3	ı	a	3	"	¥	n	ä	;	•	ä	"	ŋ	3	7	ä	"	3		=	3	ä	ä	3	"	"	"	ı	31	"	"	3	"	"	3	3	**		. (

38

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

6	Unit	hΑ	3	n	n	"	n	n	n	71	n	n	"	МA	ΑM	mA													su	77	3	3	3	3	3	я
Test limits	Мах	100	3	я	а	3	a a	ä	ä	з	з	а	3	-55	-55	52													25	3	3	3	3	3	3	я
Ě	Min													-20	-20								2/						3	3	3	3	3	3	3	я .
	Meas. terminal	A	Ф	16	5G	ပိ	, <u>5</u>	. 5	, 5	2C ₀	2C1	2C ₂	2C3	17	2	Vcc				_			人			_	١		1C ₀ to 1Y	IC ₁ to 1Y	1C ₂ to 1Y	IC ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y
16	Vcc	5.5 V	3	3	,,	3	ä	ä	ä	3	,,	"	,	n	,,	"			4.5 V	ä	3	3	3	,,	7	ä	п		5.0 V	3	3	3	3	3	3	3
15	2G				5.5 V					5.5 V	я	z	3		GND	GND			∢	В	ä	3	3	3	з	3	n						GND	3	3	n
14	∢	5.5 V				5.5 V	GND	5.5 V	GND	5.5 V	GND	5.5 V	GND	=						В	В	∢	∢	В	В	∢	٧		GND	5.0 V						
13	2C ₃												5.5 V		GND	GND										В	٧									Z
12	2C2											5.5 V			GND	GND								В	⋖										z	
11	2C1										5.5 V				GND	GND						В	⋖											Z		
10	2C ₀									5.5 V					5.5 V	GND				В	∢												Z			
6	2														GND		nitted.	itted		_	I	_	I	_	I	_	I						OUT	ä	ä	n
8	GND	GND	3	ä	n	3	ņ	ņ	ņ	3	n	¥	n	n	n	n	s are on	-55°C and Vic tests are omitted	GND	'n	3	3	3	n	n	7	n		GND	3	7	ä	n	3	3	n
7	<u></u>													GND			V _{IC} test	Vic test	L <u>2</u> /	_	I	_	I	_	I	_	I		OUT	3	я	ä				
9	ဂ္ဂ					5.5 V								5.5 V		GND	5°C and	5°C and		В	∢								Z							
2	5						5.5 V							GND		GND	$T_C = 12$	1Tc = -5				В	∢							Z						
4	1C ₂							5.5 V						GND		GND	I, except	1 except						В	∢						Z					
3	103								5.5 V					GND		GND	bgroup '	parono								В	Α	ڼ				Z				
2	В		5.5 \			5.5 V	5.5 V	GND	GND	5.5 V	5.5 V	GND		=			ts as sn	its as su		В	В	В	В	∢	∢	∢	٧	Tc = -55	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V
-	16			5.5 V		5.5 V	n	n	n					GND			and lim	and lim	A 1/	В	3	"	"	n	n	n	и	125°C and T _C = -55°C.	GND	"	n	ä				
Cases E, F	Test No.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	Same tests, terminal conditions and limits as subgroup 1, except $T_C = 125$ °C and V_{IC} tests are omitted	terminal conditions and limits as subgroup 1	56	57	58	29	09	61	62	63	64	Ш	99	99	29	89	69	20	7.1	72
MIL-	method	3010	3	3	3	3	ä	3	3	3	я	3	n	3011	3011	3005	sts, termir	ests termin										Repeat subgroup 7 at Tc	3003	(Fig 5)	3	3	я	3	3	3
	Symbol	I _I H2		31	3	3	ä	я	я	3	3	3	я	SOI	sol	22	Same te	Same tests	Truth	table	test	3	3	3	я	3	n	Repeat	tpHL1		3	3	я	3	3	ı
_	Subgroup Symbol STD-863 method	-	$T_C = 25^{\circ}C$	3	я	3	ä	я	я	3	я	а	я	я	я	а	2	3	7	T _C = 25°C	3	3	3	3	3	3	n	∞	6	$T_C = 25^{\circ}C$	3	я	я	3	я	n

See notes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

$\overline{}$																		_				_															
S	Unit	SU	3	3	3	3	3	я	п	n	ä	ä	n	=	ä	3	3	n	n	n	"	n	3	3	3	3	3	3	ä	3	3	3	3	3	3	я	n
Test limits	Мах	24	3	3	ä	n	n	n	ш	36	n	3	и	34	31	n	n	28	28	38	38	29	n	n	n	n	n	3	п	28	n	ä	ı	n	n	n	11
-	ΜË	က	3	3	3	з	я	3	n	9	z	z	п	9	3	3	3	n	n	n	n	3	3	3	3	3	з	3	n	z	я	3	3	3	3	3	Ħ
:	Meas. terminal	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y	A to 1Y	B to 1Y	A to 2Y	B to 2Y	A to 1Y	B to 1Y	A to 2Y	B to 2Y	1G to 1Y	2G to 2Y	1G to 1Y	2G to 2Y	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y
16	V _{CC}	5.0 V		ä	3	ä	ä	3	n	n	n	ä	n	5.0 V	ä	3	3	n	"	"	"	"	3	3	3	3	3	3	n	n	n	3	3	3	ä	3	n
15	2G	7				GND	n	3	n			GND	GND			GND	GND		Z		Z					GND	3	3	ä					GND	3	3	n
14	⋖	GND	5.0 V	Z	GND	Z	GND	Z	GND	Z	GND	GND	GND	GND	GND	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V						
13	2C3								Z																				Z								Z
12	2C2							z					5.0 V				5.0 V											z								z	
11	2C1						z					5.0 V				5.0 V											Z								Z		
10	2C ₀					Z						GND	GND			GND	GND		5.0 V		5.0 V					Z								Z			
6	7					OUT	3	3	п			OUT				OUT			OUT		OUT					OUT	3	3	n					OUT	3	3	a a
8	GND	GND	3	3	3	n	ņ	3	n	n	3	3	n	GND	3	ņ	3	n	n	ŋ	n	n	n	ı	ı	n	3	3	n	3	3	3	3	3	3	n	n
7	\	OUT	3	3	ä					OUT	OUT			OUT	OUT			OUT		OUT		OUT	ä	3	3					TUO	3	ä	ä				
9	ე ე	Z								GND	GND			GND	GND			2.0 V		2.0 V		Z								Z							
2	5		Z							5.0 V				2.0 V									Z								Z						
4	1C ₂			z							5.0 V				5.0 V									z								z					
3	స్ట				Z																				Z								z				
2	В	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	Z	GND	Z	GND	Z	GND	z	GND	GND	GND	GND	GND	GND	5.0 V	5.0 V	GND	GND	2.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	2.0 V
1	16	GND			3					GND				GND				Z		Z		GND		n	n					Ω	ı	3	3				
Cases E, F	Test No.			75	9/	77	78	79				83				87	88	68	90	91				92	96	26	86	66			102	103	401	105	106	107	108
MIL-	method	3003	(Fig 5)	3	я	n	z	3	и	я	3	3	и	н	=	n	3	"	и	n	и	n	3	3	а	3	3	3	п	3	3	я	3	3	3	я	я
		tpLH1	3	3	3	3	я	3	n	tPHL2	3	3	n	tpLH2	3	3	3	tpHL3	tPHL3	tpLH3	tPLH3	tPHL1	3	з	3	3	3	3	и	tPLH1	3	3	3	3	3	я	ä
-	Subgroup Symbol	6	$T_C = 25^{\circ}C$	3	3	3	3	3	3	3	3	3	3	-	=	3	3	3	3	3	"	10	T _C = 125°C	я	я	3	3	3	3	3	3	3	3	3	3	3	n

See notes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

		MIL-	Cases E, F	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	:	Ĺ	Test limits	
Subgroup Symbol STD-883	Symbol	STD-883 method	Test No.	16	В	1C ₃	1C2	101	1C ₀	17	GND	2Y	2C ₀	2C ₁	2C2	2C3	A	2G	Vcc	Meas. terminal	Min	Мах	Unit
10	tPHL2	3003	109	GND	GND			5.0 V	GND		GND						Z		5.0 V	A to 1Y	9	4	ns
$T_C = 125$ °C	ä	(Fig 5)	110	GND	Z		5.0 V		GND	OUT	3						GND		3	B to 1Y	ä	3	3
3	n	n	111		GND						ä	OUT	GND	5.0 V			Z	GND	3	A to 2Y	ä	ä	3
я	ä	3	112		Z						3	DUT	GND		5.0 V		GND	GND	3	B to 2Y	ä	3	3
3	tPLH2	n	113	GND	GND			5.0 V		OUT	n						Z		n	A to 1Y	n	42	n
7	ä	ä	114	GND	Z		5.0 V		GND	DO	3						GND		a a	B to 1Y	3	3	я
3	n	3	115		GND						'n		GND	5.0 V			Z	GND	3	A to 2Y	3	3	я
3	n	3	116		Z						'n	DUT	GND		5.0 V		GND	GND	3	B to 2Y	3	3	3
3	ғтна	n	117	Z	GND				5.0 V	OUT	n						GND		n	1G to 1Y	n	32	n
3	tPHL3	3	118		GND						3	OUT	5.0 V				GND	z	3	2G to 2Y	3	32	3
3	ғнта	n	119	Z	GND				5.0 V	OUT	n						GND		n	1G to 1Y	n	42	n
n	tргнз	n	120		GND						n	OUT	5.0 V				GND	Z	,	2G to 2Y	n	42	п
11	Same te	sts, termin	Same tests, terminal conditions and limits as subgroup 10, except T _C = -55°C.	s and lim	its as su	bgroup 1	10, except	ot T _C = -(55°C.														

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be H ≥ 2.0 V, or L ≤ 0.8 V, or open).

S	Unit	^	п	ä	и	n	3	u	n	n	3	n	n	"	n	"	3	ä	3	mA	я	*	"	3	7	7	n	"	"	ηЧ	n	n	"	"	3	n n	"	"	77
Test limits	Мах					0.4	3	3	77	-1.5	3	n	n	"	n	"	3	n	3	-1.6	n	3	n	я	3	3	n	n	n	40	и	n	7	n	3	n n	77	33	"
ř	Min	2.4	а	3	п															7.0-	я	3	з	я	а	я	а	3	3										
000	terminal	17	1	2≺	2W	1W	7	2W	2	4	В	ပို	, <u>5</u>	5	<u>5</u> 5	SC S	SC 2	2C ₂	2C ₃	٧	Ф	ς S	5	1C ₂	103	2C ₀	2C1	2C ₂	2C ₃	∢	В	ပို	<u>,</u> ნ	1C ₂	ည်	2C ₀	2C1	2C ₂	2Ç3
16		4.5 V	3	3	n	п	3	3	3	n	3	3	3	3	3	3	3	3	3	5.5 V	3	3	3	3	3	3	3	3	3	я	3	3	3	3	3	3	¥	3	3
15	\	-0.8 mA					16 mA																																
41	¥		-0.8 mA			16 mA																																	
13	⋖	0.8 V		3	п	, "	3	3	"	-12 mA										0.4 V		GND	5.5 V	GND	5.5 V	GND	5.5 V	GND	5.5 V	2.4 V		5.5 V	GND	5.5 V	GND	5.5 V	GND	5.5 V	GND
12	ე ე	2.0 V	0.8 V			2.0 V	0.8 V			ľ		-12 mA										0.4 V										2.4 V							
7	17												-12 mA										0.4 V										2.4 V						
10	1C ₂													-12 mA										0.4 \										2.4 V					
6	1C ₃														-12 mA										0.4 V										2.4 V				
8	GND	GND	n	ä	п	n	3	3	ä	n	3	ä	n	3	ä	3	3	ä	ä	n	z	3	3	ä	3	ı	n	3	ı	n	n	n	n	ä	ä	3	3	3	3
7	2C3																		-12 mA										0.4 V										2.4 V
9	2C2																	-12 mA										0.4 V										2.4 V	
2	2C1																-12 mA										0.4 V										2.4 V		
4	2C ₀			2.0 V	0.8 V			2.0 V	0.8 V							-12 mA										0.4 V										2.4 V			
3	В	0.8 V			n	n	3	3			-12 mA										0.4 V	GND	GND	5.5 V	5.5 V		GND	5.5 V	5.5 V		2.4 V	5.5 V	5.5 V	GND		5.5 V	5.5 V	GND	GND
2	2W				-0.8 mA			16 mA																															
-	7			-0.8 mA	~				16 mA																														
Cases E, F	Test No.	1		ب «	4	2	9	7			10	7	12	13	4	15	16	17	18	19	20	21	22	23	24	52	56	27	78	59	30	31	32	33	34	32	36	37	38
		3006	n	3	п	3007	3	3	3											3009	3	3	3	ä	3	3	n	3	n	3010	n	n	n	я	ä	3	3	3	a a
Jodan) logillog	Мон	n	3	п	Voi	l) =	3	"	VIC	3	я	n	3	3	3	3	3	3	1	n	3	3	3	"	"	n	3	3	IH1	3	n	"	3	3	3	¥	3	я
MIL-	dnoifians	1	$T_C = 25^{\circ}C$	3	3	3	3	3	3	3	я	я	3	3	2	ä	3	я	я	n	3	3	я	3	3	3	3	я	я	3	2	3	3	3	я	3	3	з	3

See note at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H ≥ 2.0 V, or L ≤ 0.8 V, or open).

		1										_				_																			_
ts	Unit	Su	3	3	"	"	31	31	n	3	n	μM	"	77	n	"												su	3	n	n	3	3	я	я
Test limits	Мах	100	3	ä	n	¥	ä	ä	n	"	я	-120	3	3	n	45												59	3	ä	n	3	з	я	ä
T	Min											-20	з	3	п							7						8	з	3	3	3	3	3	я
	Meas. terminal	∢	В	ე ე	, ဉ်	1C2	' స్ట	2C ₀	SC ₁	2C.	2C3	1W	\	2W	2Υ	Vcc						ノ	_			/		1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y
16	Vcc	5.5 V	3	я	ä	я	я	я	ä	3	n	n	3	z	и	n			4.5 V	з	2	я	3	я	з	п		5.0 V	з	3	3	3	3	я	n
15	17												GND						٦	I	_	I	_	I	_	I		DUT	з	3	3				
14	W1											GND							I	_	I	_	I	_	I	٦									
13	Α	5.5 V		5.5 V	GND	5.5 V	GND	5.5 V	GND	5.5 V	GND	n	n	n	и	n			В	В	٨	∢	В	В	⋖	А		GND	5.0 V						
12	1C ₀			5.5 V								GND	5.5 V			5.5 V			В	⋖								Z							
11	10,				5.5 V							GND	GND			GND					В	⋖							Z						
10	1C2					5.5 V						GND	GND			GND							В	∢						Z					
6	1C ₃						5.5 V					GND	GND			GND	= 125°C and V _{IC} tests are omitted	= -55°C and V _{IC} tests are omitted							В	А					Z				
8	GND	GND	3	3	3	3	3	3	3	3	3	n	3	3	п	n	tests are	ests are	GND	n	n	n	n	n	n	ш		GND	n	n	"	"	3	n	n
7	2C3										5.5 V			GND	и	n	and V _{IC}	ind V _{IC} 1							В	А									Z
9	2C2									5.5 V				GND	u	n	125°C	-55°C a					В	∢										Z	
2	2C1								5.5 V					GND	n	n					В	∢											z		
4	2C ₀							5.5 V						GND	5.5 V	5.5 V	o 1, exce	limits as subgroup 1, except T _C	В	⋖												Z			
3	В		5.5 V	3	3	GND	GND		5.5 V	GND	*	n	3		п	n	ubgroup	upgroup	B <u>1</u> /	3	3	3	⋖	3	ä	n	: = -55°C.	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V
2	2W													GND			nits as s	nits as s	I	_	I	_	I	_	I	L	Tc = -{								
1	27														GND		is and lir	is and lir		I	_	I	_	I	_	I	5°C and					OUT	n	я	n
Cases E, F	Test No.	39	40	14	42	43	4	45	46	47	48	49	20			53	Same tests, terminal conditions and limits as subgroup 1, except T _C	Same tests, terminal conditions and	54	22	26	22	28	69	09	61	Repeat subgroup 7 at T_C = 125°C and T_C	62	63	64	65		29	89	69
	S1D-883 method	3010	n	n	n	я	n	n	n	n	*	3011	3	n	n	3008	tests, tern	tests, tern									at subgroul	3003	(Fig 5)	3	3	3	3	3	3
	Symbol	IIH2	7	3	n	n	n	n	"	"	n	los) =	n	п	lcc	Same	Same	Truth	table	test	n	3	n	3	и	Repe	tPHL1	ä	3	3	3	3	3	n
	Subgroup Symbol S1D-883 method	-	T _C = 25°C	3	ı	n	n	n	n	3	n	ä	3	n	n	71	2	3	7	$T_C = 25^{\circ}C$	7	n	n	n	3	n	8	6	$T_C = 25^{\circ}C$	3	n	3	3	71	ä

See note at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

																																					\neg
its	Unit	Su	3	3	3	3	3	3	n	я	3	3	3	3	3	3	3	"	3	3	3	3	3	3	ä	us	3	3	n	n	3	я	я	"	3	3	3
Test limits	Max	59	ä	ä	3	3	3	3	n	18	3	3	3	3	3	"	3	17	ä	3	n	3	3	ä	n	37	я	ä	n	37	я	3	n	28	3	я	3
	Min	ဗ	я	я	ä	3	3	я	n	n	3	3	3	3	3	я	я	"	3	ä	я	z	3	3	n	9	3	3	я	n	3	3	73	"	3	я	3
	Meas. terminal	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y	1C ₀ to 1W	1C ₁ to 1W	1C ₂ to 1W	1C ₃ to 1W	2C ₀ to 2W	2C ₁ to 2W	2C ₂ to 2W	2C ₃ to 2W	1C ₀ to 1W	1C ₁ to 1W	1C ₂ to 1W	1C ₃ to 1W	2C ₀ to 2W	2C ₁ to 2W	2C ₂ to 2W	$2C_3$ to $2W$	A to 1Y	A to 2Y	B to 1Y	B to 2Y	A to 1Y	A to 2Y	B to 1Y	B to 2Y	A to 1W	A to 2W	B to 1W	B to 2W
16	Vcc	5.0 V	я	3	3	3	3	3	и	3	3	3	3	3	3	3	3	71	я	3	3	3	3	3	я,	-	3	3	n	77	3	3	и	"	3	3	3
15	17	_	я	3	7																					OUT		OUT		OUT		OUT					
4	W1									OUT	2	3	3					OUT	з	3	3													OUT		DO	
13	A	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V		5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V		5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	z	Z	GND	GND	Z	Z	GND	GND	Z		GND	GND
12	100	Z								Z								Z								GND		GND		GND		GND		GND		GND	
7	101		Z								Z								Z							5.0 V				5.0 V				5.0 V			
10	1C2			Z								Z								Z								5.0 V				5.0 V				5.0 V	
6	1C ₃				Z								z								Z																
8	GND	GND	3	3	3	я	я	я	п	n	3	3	я	я	я	n	3	n	ä	3	z	3	3	z	п		я	3	п	n	ı	я	п	n	я	2	3
7	2C ₃								Z								Z							Z													
9	2C2							Z								Z								Z					5.0 V				5.0 V				5.0 V
2	2C ₁						Z								Z								Z				5.0 V				5.0 V				5.0 V		
4	2C ₀					z								Z								Z					GND										
3	В	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	Z	IN	GND	GND	Z	IN	GND	GND	Z	Z
2	2W													OUT	3	n	n					OUT	n	3	ш										OUT		OUT
-	2Y					OUT	3	ä	п																		OUT		OUT		OUT		OUT				
Cases E, F	Test No.	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	88	06	91	92	93	94	92	96	6	86	66	100	101	102	103	104	105
MIL-	STD-883 method	3003	(Fig 5)	3	3	"	3	3	п	n	3	3	3	n	3	я	3	n	3	3	3	3	3	я	п		-	3	п	3	3	3	п	n	3	3	3
	Symbol	tPLH1	3	3	3	3	3	3	n	tPHL2	3	3	3	3	3	3	3	tPLH2	3	3	3	3	3	я	п	tPHL3	3	3	n	£НПа	3	3	n	tPHL4	3	3	3
	Subgroup Symbol STD-883 method	6	$T_{\rm C} = 25^{\circ}{\rm C}$	ä	я	3	я	я	3	3	3	3	3	я	3	я	я	3	3	3	ä	3	3	я	я	=	-	я	я	3	3	3	3	3	3	я	ä

See note at end of device type 04.

_																						1																
ts	Unit	su	3	3	n	n	3	7	3	я	3	3	n	"	7	я	я	3	3	3	3	n	3	3	3	3	3	3	n	3	7	3	3	"	3	3	n	
Test limits	Мах	26	3	3	n	41	я	3	3	3	з	3	n	39	3	3	3	3	3	3	з	25	3	3	3	3	3	3	п	24	3	3	3	3	3	3	и	
-	Min	9	3	3	п	3	з	2	я	3	я	з	п	я	2	я	я	я	я	3	я	n	я	3	з	3	3	3	п	з	3	3	з	2	3	3	z	
:	Meas. terminal	A to 1W	A to 2W	B to 1W	B to 2W	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y	1C ₀ to 1Y	1C ₁ to 1Y	1C ₂ to 1Y	1C ₃ to 1Y	2C ₀ to 2Y	2C ₁ to 2Y	2C ₂ to 2Y	2C ₃ to 2Y	1C ₀ to 1W	1C ₁ to 1W	1C ₂ to 1W	1C ₃ to 1W	2C ₀ to 2W	2C ₁ to 2W	2C ₂ to 2W	2C ₃ to 2W	1C ₀ to 1W	1C ₁ to 1W	1C ₂ to 1W	1C ₃ to 1W	2C ₀ to 2W	2C ₁ to 2W	2C ₂ to 2W	2C ₃ to 2W	
16	Vcc	5.0 V	n	n	и	n	n	n	n	n	n	3	п	n	3	n	n	n	n	n	n	n	n	n	3	3	n	3	п	n	3	3	3	3	3	3	n	
15	17					OUT	ä	3	3					OUT	3	я	я																					
41	1W	OUT		OUT																		OUT	n	3	3					OUT	ä	3	n					
2 3 4 5 6 7 8 9 10 11 12 13 14	٨	Z	Z	GND	GND	GND	5.0 V																															
12	1C ₀	GND		GND		Z								Z								Z								Z								
7	1C ₁	5.0 V					Z								z								Z								Z							
10	1C2			5.0 V				Z								z								z								Z						
6	1C ₃								Z								z								Z								Z					
8	GND	GND	3	ä	"	"	3	3	3	3	3	3	n	"	3	я	я	3	3	3	3	n	3	3	3	я	3	3	п	n	3	3	3	3	3	я	z z	
) <u></u>	2C ₃												Z								Z								Z								Z	
9	2C ₂				5.0 V							z								Z								z								z		
2	2C ₁ 2		2.0 V		5						z								z								Z								z			
4	2C ₀		GND 5		GND					Z								Z								Z								z				
3	В	GND	GND	z	N G	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	2.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	
2	2W	9	OUT		OUT	9	0	2	2	0	0	2	5	0	0	2	2	0	0	2	2	Θ	0	Ω.	2	—			. 5	0	0	2	Ω.	-	<u>"</u>		. 5	
_	2Y ;		0		0					OUT	3	3	a					OUT	3	3	3													O				e 04.
Cases E, F	Test No.	106	107	108	109	110	111	112	113	114	115		117	118	119	120	121	122 0	123		125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	See note at end of device type 04
		3003	(Fig 5)	3	n	n	3	"	"	3	3	3	п	n	3	3	3	"	"	3	3	n	"	3	3	3	3	3	n	3	3	3	3	3	3	3	3	t end o
	l Slodmy	tPLH4	<u>"</u>	я	n	tPHL1	я	3	"	n	3	3	n	фГН1	3	7	7	"	"	3	3	tPHL2	"	3	3	3	3	3	n	tPLH2	3	3	3	3	3	3	3	note a
	Subgroup Symbol STD-883	6	$T_C = 25^{\circ}C$	я	n	10 1	$T_C = 125^{\circ}C$	3	я	3	я	3	ä	3	я	3	3	я	я	я	я	3	я	3	я	я	я	3	3	3	я	я	я	я	3	я	3	Set

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H ≥ 2.0 V, or L ≤ 0.8 V, or open).

		MIL-	Cases E, F	_	2	3	4	2	9	7	8	6	10	11	12	13 1	14	15	16		ř	Test limits	
roup	Symbol	Subgroup Symbol STD-883	Test No.	2Y	2W	В	2C ₀	2C1	2C2	2C ₃	GND	103	1C2	5	100	A 1	M	7	VCC	Meas. terminal	Min	Мах	Unit
10	tPHL3	3003	142			GND					GND			5.0 V (GND	Z	0	OUT	5.0 V	A to 1Y	9	51	ns
T _C = 125°C	3	(Fig 5)	143	OUT		GND	GND	5.0 V			3					z			3	A to 2Y	з	3	3
	3	n	14			z					7		5.0 V		GND	GND	0	OUT	7	B to 1Y	з	3	я
3	n	n	145	OUT		z	GND		5.0 V		n					GND			7	B to 2Y	я	я	я
3	tргнз	n	146			GND					n			5.0 V	GND	Z	0	OUT	n	A to 1Y	n	я	n
	3	n	147	OUT		GND	GND	5.0 V			я					z			3	A to 2Y	я	3	я
,	3	n	148			Z					n		5.0 V		GND	GND	0	OUT	3	B to 1Y	3	3	я
,	n	n	149	OUT		z	GND		5.0 V		7					GND			7	B to 2Y	3	n	я
	tPHL4	n	150			GND					n			5.0 V	GND	ō N	OUT		n	A to 1W	n	39	n
	n	n	151		OUT	GND	GND	5.0 V			3					z			3	A to 2W	я	3	я
,	n	n	152			z					3	/	5.0 V		GND	GND OI	OUT		3	B to 1W	з	3	3
,	n	n	153		OUT	z	GND		5.0 V		3					GND			3	B to 2W	з	3	3
,	tPLH4	n	154			GND					n			5.0 V	GND	ō N	OUT		n	A to 1W	n	34	n
	n	n	155		OUT	GND	GND	5.0 V			3					z			3	A to 2W	3	3	3
	3	n	156			z					ä	/	5.0 V		GND	GND	OUT		3	B to 1W	я	3	3
u	и	n	157		OUT	Z	GND		5.0 V		n				ن	GND			n	B to 2W	n	п	n
11	Samet	tests, term	Same tests, terminal conditions and limits as subgrou	ıs and lin	nits as sı	ubgroup	10, exce	ip 10, except $T_C = -55^{\circ}C$.	-55°C.														

e 05.	
typ(
evice	
for d	
inspection for device type 05.	
inspe	
up A	
Gro	
TABLE III.	
Ľ	

ts	Unit	>	n	n	n	n	ä	3	"	n	ı	ı	ä	n	3	ä	ı	3	ı	mA	"	ä	n	3	n	n	n	ä	n	γh	3	ä	3	n	3	ı	ı	n	n
Test limits	Max					0.4	n	"	n	-1.5	n	n	п	n	я	я	n	3	n	-1.6	n	я	n	31	я	n	n	n	и	40	n	n	71	n	я	n	n	n	и
Ĺ	Min	2.4	я	n	u															7.0-	ä	3	3	3	n	n	n	3	u										
	Meas. terminal	7	2	37	47	17	2	37	74	A	1B ₀	1B ₁	2B ₀	2B1	4B1	4B0	3B1	3B ₀	ŋ	g	∢	1B ₀	1B ₁	2B ₀	2B1	4B1	4B ₀	3B1	$3B_0$	9	∢	1B ₀	1B1	2B ₀	2B1	4B1	4B0	3B ₁	$3B_0$
16	Vcc	>	n	3	"	n	3	3	3	n	3	3	3	3	3	,	3	3	3	5.5 V	3	3	3	3	я	3	3	n	п	"	n	3	7	'n	3	3	3	3	n
15	ტ	0.8 V	n	3	"	2.0 V	ı	ä	з										-12 mA	0.4 V	GND	3	ä	3	я	ı	3	n	п	2.4 V	5.5 V	ä	ä	'n	3	ŋ	ŋ	3	n
14	3B ₀																	-12 mA											0.4 V										2.4 V
13	3B1			2.0 V													-12 mA											0.4 V										2.4 V	
12	37			8 mA				16 mA									1																						
7	4B ₀															-12 mA											0.4 V										2.4 V		
10	4B1				2.0 V										-12 mA											0.4 V										2.4 V			
6	74				8 mA				16 mA																														
∞	GND	GND	а	n		n	а	3	,	3	3	3	3	3	3	3	3	3	3	n	3	3	3	3	n	а	n	3	n	n	3	3	3	3	3	3	3	n	3
7	27 (8 mA				16 mA																																
9	2B ₁		2.0 V 8				7							-12 mA											V 4.0										2.4 V				
2	2B ₀		2										-12 mA	7										0.4 V	0									2.4 V	7				
4	*	8 mA				16 mA							7																				2.4 V	(1					
3	1B ₁	2.0 V				1						-12 mA											0.4 V										N						
2	1B ₀	(4									-12 mA	7										0.4 V	0									2.4 V							
1 2 3 4 5 6 7 8 9 10 11 12 13 14		>		3	n					mA	7										>		5.5 V	9	>	>	9	>	9		>		9	>	9	9	>	9	> 2
E, F 1	O	2.0 V	3		,					-12 mA											0.4 V	GND	5.5	GND	5.5 V	5.5 V	GND	5.5 V	GND		2.4 V	5.5 V	GND	5.5 V	GND	GND	5.5 V	GND	5.5 V
Cases E, F	Test No.	-	7	က	4	9	9	7	00	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24	25	26	27	28	58	30	31	32	33	34	35	36	37	38
-JIM	STD-883 method	3006	3	3	n	3007	3	3	3											3009	3	3	3	3	3	3	3	3	п	3010	3	3	3	3	3	3	3	3	" 38 5.5 V
	Symbol	МОН	я	3	п	Vol	а	3	3	VIC	3	3	3	3	я	я	3	3	3	- 	3	я	3	3	3	а	3	я	n	l _{IH1}	3	3	3	я	я	3	3	3	n
	Subgroup	-	$T_C = 25^{\circ}C$	n	3	n	75	3	¥	3	n	n	3	3	я	я	3	n	3	ä	3	n	3	я	3	3	3	я	n	n	n	3	я	я	я	n	n	n	п

47

TABLE III. Group A inspection for device type $\overline{05}$ – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

S	Unit	μĄ	3	3	3	3	3	3	3	я	3	mA	3	3	3	n									SU	3	я	з	71	3	3	n
Test limits	Мах	100	я	n	n	n	n	n	n	n	n	-120	я	n	n	50									30	3	я	n	27	n	я	и
T	Min											-20	n	"	n						/5				9	n	n	n	n	n	3	n
74000	Meas. terminal	9	∢	1B ₀	1B ₁	2B ₀	2B ₁	4B1	4B ₀	3B1	3B ₀	17	27	47	37	Vcc			,				`		A to 1Y	A to 2Y	A to 3Y	A to 4Y	A to 1Y	A to 2Y	A to 3Y	A to 4Y
16	Vcc	5.5 V	3	"	n	3	"	"	7	7	"	n	"	3	3	n			4.5 V	"	3	3	n		2.0 V	3	3	3	"	3	3	3
15	G	5.5 V	n	ä	n	3	3	3	ä	n	n	GND	n	3	z	GND			٧	В	3	3	п		GND	z	n	3	n	3	3	3
14	$3B_0$										5.5 V				5.5 V	GND						В	٧				GND				GND	
13	3B1									5.5 V					5.5 V	GND				В	⋖						5.0 V				5.0 V	
12	37														GND				٦	_	I	_	I				OUT				DOL	
11	4B ₀								5.5 V					5.5 V		GND						В	٧					GND				GND
10	4B1							5.5 V						5.5 V		GND				В	∢							5.0 V				5.0 V
6	4													GND			omitted.	mitted.	_	_	I	_	I					OUT				OUT
8	GND	GND	ä	ä	n	"	z	z	ä	n	n	n	ä	"	n n	п	sts are o	sts are c	GND	и	n	3	и		GND	z	ä	я	n	3	3	п
7	2Y												GND				nd V _{IC} te	oup 1, except T _C = -55°C and V _{IC} tests are omitted	٦	7	I	٦	Н			OUT				OUT		
9	2B ₁						5.5 V						5.5 V			GND	125°C ar	-55°C ar		В	∢					5.0 V				5.0 V		
2	2B ₀					5.5 V							5.5 V			GND	pt Tc =	pt Tc =				В	٧			GND				GND		
4	7											GND					1, exce	1, exce	L <u>2</u> /	_	I	_	I		OUT				OUT			
3	1B ₁				5.5 V							5.5 V				GND	abgroup	ubgroup		В	⋖			Ö.	5.0 V				5.0 V			
2	1B ₀			5.5 V								5.5 V				GND	nits as sı	mits as s				В	٧	I T _C = -5!	GND				GND			
1	Α		5.5 V	5.5 V	GND	5.5 V	GND	GND	5.5 V	GND	5.5 V	5.5 V	я	3	з	GND	ns and lir	ns and li		A 1/	∢	В	В	25°C and	Z	3	я	3	я	3	3	n
Cases E, F	Test No.	68	40	41	42	43	4	45	46	47	48	49	20	51	52	53	Same tests, terminal conditions and limits as subgroup 1, except T_C = 125°C and V_{IC} tests are omitted	Same tests, terminal conditions and limits as subgr	54	22	26	22	28	Repeat subgroup 7 at T_C = 125°C and T_C = -55°C.	29	09	61	62	63	64	99	99
	STD-883 method	3010	3	я	я	3	3	3	я	n	3	3011	я	з	3	3005	sts, termi	ests, term						subgroup	3003	(Fig 6)	я	я	я	3	3	n
	Symbol	2HI1	я	я	n	3	3	3	я	я	n	los	я	3	n	lcc	Same te	Same te	Truth	table	test	3	n	Repeat	tPHL1	7	я	ä	tpLH1	n	n	n
1	Subgroup Symbol STD-863	1	$T_C = 25^{\circ}C$	n	n	3	3	n	3	*	*	n	n	¥	3	п	2	3	7	$T_C = 25^{\circ}C$	3	ı	п	80	6	$T_C = 25^{\circ}C$	n	3	3	3	3	11

See notes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	T	Ħ																																				
di.	<u></u>	Unit	SU	77	3	3	n	3	3	я	3	7	3	3	3	"	3	3	n	ä	3	3	3	3	3	"	"	3	77	3	я	3	3	3	31	3	3	π
Toot limits	162	Мах	28	7	3	3	23	n	7	3	20	71	3	7	3	3	"	3	20	"	"	3	3	3	7	n	49	ä	7	3	41	"	31	¥	39	3	3	n
ľ		Min	3	3	3	з	n	3	3	3	я	3	з	3	3	3	3	3	n	3	3	3	3	3	3	11	9	3	3	3	31	3	3	3	3	3	3	n
	Meas	terminal	G to 1Y	G to 2Y	G to 3Y	G to 4Y	G to 1Y	G to 2Y	G to 3Y	G to 4Y	1B ₀ to 1Y	1B ₁ to 1Y	2B ₀ to 2Y	2B ₁ to 2Y	3B ₀ to 3Y	3B ₁ to 3Y	4B ₀ to 4Y	4B ₁ to 4Y	1B ₀ to 1Y	1B ₁ to 1Y	2B ₀ to 2Y	2B ₁ to 2Y	3B ₀ to 3Y	3B ₁ to 3Y	4B ₀ to 4Y	4B ₁ to 4Y	A to1Y	A to 2Y	A to 3Y	A to 4Y	A to1Y	A to 2Y	A to 3Y	A to 4Y	G to 1Y	G to 2Y	G to 3Y	G to 4Y
4	2	Vcc	5.0 V	n	n	3	n	n	n	n	n	n	ä	n	n	n	n	ä	n	n	n	ä	ä	n	n	ш	n	ä	"	"	"	n	n	3	"	2	ä	п
n t	2	G	Z	3	3	3	я	z	3	3	GND	3	3	3	3	3	3	3	я	3	3	3	3	3	n	п	n	3	3	3	я	3	я	3	Z	3	3	п
GII).	<u>†</u>	3B ₀													Z								Z						GND				GND					
, c	2	3B1			5.0 V				5.0 V							z								Z					5.0 V				5.0 V				5.0 V	
0.0	7	37			OUT				OUT						OUT	OUT							OUT	OUT					OUT				OUT				TUO	
; 2 5	=	4B ₀															Z								Z					GND				GND				
2.0.4	2	4B1				5.0 V				5.0 V								z								Z				5.0 V				5.0 V				5.0 V
) 	6	4				OUT :				OUT							OUT	OUT							OUT	OUT				OUT				OUT				OUT
, IIIay	0	GND	GND	3	3	3	n	з	2	я	я	3	3	3	3	3	3	3	23	3	3	я	я	3	3	п	n	3	3	3	я	3	3	3	n	3	3	и
) 	1	2Y (OUT				OUT					OUT	OUT							OUT	OUT						OUT				OUT				OUT		
or des	0	2B ₁		2.0 V				5.0 V						Z								Z						2.0 V				5.0 V				2.0 V		
SIIId)	C	2B ₀		<u></u>									Z								Z							GND				GND				<u> </u>		
	1	1	OUT				OUT				OUT	OUT							OUT	OUT							OUT				OUT				OUT			
,	r	1B ₁	5.0 V				5.0 V					Z								Z							5.0 V				5.0 V				5.0 V			
Terminal conditions (pins not designated may be n ≥ 2.0 V, or L ≥ 0.0 V, or oben)	7	1B ₀									z								Z								GND				GND							
,	-	٧	5.0 V	3	3	я	з	а	а	я	GND	5.0 V	Z	а	3	3	я	3	я	3	5.0 V	3	3	и														
	۱, ٦	Test No.		89	69	02	71	72	73	74															68		91	95	93	94	95	96	26	86	66	00	101	102
																																			<i></i>	_	_	_
- IIM	STD-8	method		(Fig 6)	3	3	n	"	"	"	n	3	3	3	3	3	3	3	"	3	3	ä	ä	3	я	n	3003	(Fig 6)	3	3	n	3	"	3	"	3	3	n
	Symbo	Cyllin.	tPHL2		3	ä	tPLH2	n	n	n	tPHL3	7	71	3	3	3	3	3	tPLH3	3	3	n	n	3	n	n	tPHL1		3	3	tPLH1	7	n	"	tPHL2	3	3	n
	Subaroup	dpoigano	6	$T_C = 25^{\circ}C$	n	n	n	n	n	n	n	n	n	¥	n	¥	n	я	n	n	¥	n	n	n	n	n	10	$T_C = 125$ °C	n	n	n	n	n	я	3	3	n	п

See notes at end of device type 05.

TABLE III. Group A inspection for device type $\overline{05}$ – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

	Unit	ns	3	"	"	3	3	3	3	3	3	3	3		3	3	3	3	3	3	3	
imits																						
Test limits	Мах	33	3	n	n	25	3	n	ä	n	ä	3	3	35	3	ä	3	3	ä	3	3	
	Min	3	3	3	3	" ~	" ~	* >-	" ~	" ~	" ~	* >-	* >-	: >-	* >-	" ~	* >-	" ~	" ~	* -	3 >-	
	Meas. terminal	G to 1Y	G to 2Y	G to 3Y	G to 4Y	1B ₀ to 1Y	1B ₁ to 1Y	2B ₀ to 2Y	2B ₁ to 2Y	3B ₀ to 3Y	3B ₁ to 3Y	4B ₀ to 4Y	4B ₁ to 4Y	1B ₀ to 1Y	1B ₁ to 1Y	2B ₀ to 2Y	2B ₁ to 2Y	3B ₀ to 3Y	3B ₁ to 3Y	4B ₀ to 4Y	4B ₁ to 4Y	
16	Vcc	5.0 V	3	3	3	. 1	,	, 2	, 2	3	" "	² 4	² 4		*	, 2	, 2	" "	3	² 4	² 4	
15	9	Z Z	3	3	3	GND	3	3	3	3	3	3	3		3	3	3	3	3	3	3	
14	3B ₀									Z								Z				
. 13				5.0 V							z								z			
	3B1									_								_				
12	37			OUT						OUT	9							9	OUT			
11	4B0											Z								Z		
10	4B1				5.0 V								Z								Z	
6	47				OUT							OUT	OUT							OUT	OUT	
8	GND	GND	3	3	n	n	3	я	3	n	3	3	3	=	3	3	3	3	3	3	3	
7	2Y		DUT					OUT	OUT							OUT	OUT					
9	2B ₁		5.0 V						Z								z					55°C.
2	2B ₀							Z								z						t T _C = -{
4	17	OUT				OUT	OUT							OUT	OUT							p 10, except T _C = -55°C
3	1B1	5.0 V					Z								Z							group 10
2	1B ₀					z								Z								s as sub
_	∢	5.0 V	3	3	3	GND	5.0 V	and limit														
Cases E, F	Test No.	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	Same tests, terminal conditions and limits as subgrou
		3003	(Fig 6)	я	я	я	я	я	я	я	я	я	я	=		я	я	я	я	я	3	s, termina
-	Symbol	tPLH2	3	3	я	tPHL3	я	3	я	я	я	з	з	фгнз	3	я	з	я	я	я	я	Same test
-	Subgroup Symbol STD-883 method	10	$T_C = 125^{\circ}C$	n	n	я	n	77	n	n	n	n	n	=	=	n	n	n	n	n	n	11

e 06.
rice type
for dev
inspection
Group A
TABLE III.

	1	1			1														-1																									
its	Unit	>	n	3 3		3	7	n	"	n	n	"		3	3	n	"	"	٠	mA	я	"	"	n	"	n	"		7	"	n	n	γh	n	n	3	n	"	я	n	3	n	n	я
Test limits	Мах			4.0	4.0	-1.5	3	"	"	"	3	3		3	3	3	3	7	١	-1.6	"	"	"	"	"	"	3		3	3	"	"	40	3	"	31	"	"	"	"	"	"	n	3
	Min	2.4	2.4																	-0.7	n	"	3	"	"	"	n		3	3	"	"												
	Meas. terminal	>	M	>	M	۵	7	D2	ద	2	ל ל	ĵ i	ရိ	0	Ŋ	⋖	α	ם כ	ن	ტ	∢	В	O	٥	3 2	، د	1	ຕິ	Δ	D²	De	D ₇	9	∢	В	O	۵	3 5	ے د	2 6	3 0	Ğ	် ဝ	<u>0</u>
16	Vcc	4.5 V	и	3 3		n	3	n	n	n	n	7		3	n	n	3	"		5.5 V	n	n	n	п	n	n	n		3	я	3	3	n	n	n	n	n	n	n	n	"	n	я	ä
15	D4									-12 mA	!																		0.4 \											2.4 V				
41	Ds										-12 m	1																		0.4 \												2.4 \		
13 14	De												-12 mA																		0.4 V												2.4 V	
12	D2												1	-12 mA																		0.4 V												2.4 V
	4	V 8.0	2.0 V	2.0 V	۰.۵ م									`1		-12 mA				5.5 V	0.4 V	5.5 V	5.5 V	CNC	\ \ \ \ \ \		2 2 2	2.0	GND	5.5 V	GND	5.5 V	GND	2.4 V	GND	GND	5.5 V	GND	5.5 \	GND	5.5 V	GND	5.5 V	
10	В	-	_	2.0 \	-+											<u>'ı</u>	-12 m A	<u> </u>			5.5 V											2.5 \		GND	2.4 V	GND	5.5 V							
6	O	1		2.0 \	-+												``		7		5.5 V					3	3		>	3		3		GND	GND	2.4 \			3	3	GND		3	3
&	GND	Ω	,	3 3	T	3	3	n	2	n	я	3		3	ä	я	3			3	3	3	,	,	3	3	n		3	n	3	3	, ,	,	,	3	3	"	3	n	-	n	n	3
	9	0.8 V	.0 V	2.0 V	> 0.										-12 mA					0.4 V	GND	3	3	7	3	3	3		3	3	3	3	2.4 V	> 5.	3	3	7	3	3	7	3	3	3	3
9	*	0	-0.8 mA 2		n Am oi										7					0													2	ĽΩ										
2	>	-0.8 mA		16 mA	=																																							
4	D ₀	2.0 V -0.8			Z.U V	-12 mA																		740	•												2.4 V							
2 3 4 5 6 7 8 9 10 11	D ₁	2.		c	7	-	-12 mA																	C	7 7 0	•											2	2.4 V						
2	D ₂						-	-12 mA																		2	1 >											2	2.4 \					
_	D3 [-12	-12 mA																	•		> 4.0											2	2.4 V				
Ь									-12																		(ò —												5				
Cases E,	Test No.	-	2	ი -	4	2	9	7	∞	σ	, 5	2 ;	= 1	12	13	4	7	2 9	J0	17	18	19	20	2	; s	1 8	3 3	47	22	56	27	28	29	30	31	32	33	8	35	38	37	38	39	40
MIL-	STD-883 method	3006	3006	3007	3007															3009	2	я	3	n	я	ŋ	n		3	z	3	3	3010	ä	3	я	n	3	3	n	3	n	я	я
_		МОН	Vон	Vol	VOL	VIC	3	я	n	3	я	¥		3	я	я	3	n		<u>=</u>	, a	я	3	3	3	7	8		3	я	3	3	IH1	3	3	3	я	3	3	3	3	я	я	3
	Subgroup Symbol	-	T _C = 25°C	я я		3	3	"	"	3	3	3		3	я	я	3	8	'	3	3	я	3	7	3	3	3		3	7	3	3	3	3	з	3	з	3	3	2	3	3	3	3

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

Subjourney Survive Sur		Ħ	d												4	4	4																				
Symbol S	mits				3	3	"	*	"	3	"	3	_	-																						_	1
Symbol STD-3802 Test-No. Casea E. F 1 2 3 4 5 6 7 8 7 8 9 10 11 12 13 14 15 16 Measure metals between conficious and limits as subgroup; 1 each of test size with a section of test	Test li		100	2	3	3	3	z	ä	3	3	"	•	-			48																			_	1
Name Name															-20	-20												2									1
Name Name		Meas. ermina	9	⋖	Ф	ပ	٥	2 5	- ć	2 0	D4	D ₅	D ₆	D2	8	>	Vcc			_								<u> </u>	_						_	`	İ
Name			.5 V	3	3	3	3	ä	3	3	3	3		3	n	3	n			.5 V	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1
Symbol St.D. Case E 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ıo		2								>				Q					4																	ı
Milk Case F 1 2 3 4 5 6 7 8 9 10 11 12 13	_										5.5				ō	_														_							ı
Mile	14	Ds										5.5 V			GND	=	=														В	⋖					1
Mile	13	De											5.5 V		3ND		-																В	⋖			
Name State	12	D7											4,																						В	⋖	
MML Cases E, F 1 2 3 4 5 6 7 8 9 10 MIL ML ML ML ML ML ML ML	_		9	> 2	9	9	> 2	9	. >	9	> 2	9	> 2			3	,				m	m	4	4	m	m	4	4	m	m	4	4	m	m		4	Ì
Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name State Name Name Name State Name Name Name Name Name Name State Name Nam		_												ซิ							_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Symbol S	10	В		N S	5.5			5.5	8 8	S S			N S	3	n	я	n				В	я	я	3	∢	3	3	3	В	3	я	3	⋖	я	3	2	1
Name	6	ပ	GND	n	3	5.5	"	n	n	3	GND	-	-	3	n	ä	n	nitted.	nitted.		Ф	n	n	"	"	"	n	3	∢	"	n	"	n	n	3	"	ı
Name	80	GND	GND	3	3	3	ä	3	ä	3	ä	3	=	3	n	3	n	are on	are on	GND	3	n	n	ı	n	n	3	3	n	n	n	ä	n	n	3	n	Ì
Name	7	ŋ	2.5 V	3	я	3	3	я	n	ä	n	3			=	GND	GND	IC tests	c tests	4	В	n	n	n	n	n	3	3	n	n	n	n	n	n	3	n	1
Name	9		4)															and V	and V		ェ	_	ェ	_	ェ	_	ı	_	ェ	_	ェ	_	ı	_		_	İ
Name															9	_)°53-=	7																_	Ì
	2	<u>></u>																pt Tc =		—	_	エ	_	エ	_	エ	_	Ι	_	エ	_	エ	_	エ	_		1
	4	۵					5.5								GND	5.5 V	5.5 V	1, exce	1, exc	7	Ф	⋖															
	3	5						5.5 V							GND	=	=	ogroup	bgroup				В	⋖													ني
	2	D2							5.5 V						GND	-	=	s as sul	s as su						В	۷											. = -55
	_	D ₃								2.5 \					SND		-	nd limits	nd limit								В	⋖									and To
		o O								4)								ions ar	tions a																		125°C
	Cases I	Test	41	45	43	4	45	46	47	48	49	20	51	52	53	72	22	al condi	al condi	26	22	28	29	90	61	62	63	4	65	99	29	89	69	70	7	72	at Tc =
		hod	10	_	_	_	_	,	_		_	_	_	_	11	7	90	ermina	termina																		roup 7
	₹	met D	30	•	_	_	•	•	_		•	_	_	_	30	30	30	tests, t	tests,																		at subg
Subgroup TC = 25°C TC = 25°C TC = 25°C	c	Symbo	I _{IH2}	3	3	3	3	я	3	3	3	3		=	los	los	8	Same	Same	Truth	table	test	3	3	3	3	3	3	3	3	3	3	3	3	3	ä	Repe
	roup			25°C																	25°C																
	Subg			TC	٠	ď	4	3	3	4	a	4	_		a	•	a	.,	(,,		T _O	•	•	a	٩	٩	•	4	a	٩	•	a	٠	٠	•	a	Ψ

See notes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

S	Unit	SU	я	я	3	3	3	n	n	3	"	n	,	n	n	n	n	n	¥	n	3	=	3	3	з	n	з	n	"	3	3	я
Test limits	Мах	32	я	я	59	3	3	40	з	з	39	я	я	28	26	37	35	20	3	3	3	=	3	3	я	17	я	я	з	з	3	z
Te	Min	9	я	3	n	"	3	80	я	3	n	я	я	9	9	∞	œ	3	"	3	7	-	3	3	ä	n	я	я	я	3	3	3
:	Meas. terminal	A to W	B to W	C to W	A to W	B to W	C to W	A to Y	B to Y	C to Y	A to Y	B to Y	C to Y	G to W	G to W	G to Y	G to Y	D ₀ to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W	D ₀ to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	W of a C
16	Vcc	5.0 V	3	ä	я	3	3	я	3	z	я	3	3	я	3	я	3	п	3	3	2	=	3	3	3	3	ä	3	3	z	3	3
15	D4			5.0 V			5.0 V			5.0 V			5.0 V									Z								Z		
14	D5																						Z								Z	
13	De																							z								2
12	D7																								z							
11	A	Z	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	3	п	3	я	3	n	5.0 V	GND	5.0 V	CINC										
10	В	GND	Z	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	я	3	я	3	n	3	5.0 V	5.0 V	GND	GND	5.0 V	5.0 V	GND	GND	5.0 V				7
6	C	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	GND	Z	GND	3	3	з	3	з	3	3	5.0 V	3	3	3	GND	я	3	3	5.0 V	3	"
8	GND	GND	n	3	з	3	3	n	а	n	з	n	n	n	3	n	n	n	3	2	3	=	3	3	3	n	3	3	3	n	3	3
7	Э	GND	n	n	"	3	3	n	n	n	"	n	n	Z	n	n	n	GND	3	n	z	GND	3	3	n	n	"	n	"	n	2	"
9	8	OUT	3	3	n	3	3							OUT	OUT			OUT	3	2	3	OUT	3	3	я	n	я	я	я	z	3	77
2	\							OUT	n	n	n	n	n			OUT	OUT															
4	D ₀	GND	я	я	я	3	3	я	я	я	я	я	я	5.0 V	3	я	я	Z								Z						
3	D1	5.0 V			5.0 V			5.0 V			5.0 V								Z								z					
2	D2		5.0 V			5.0 V			5.0 V			5.0 V								Z								Z				
1	D3																				Z								Z			
Cases E, F	Test No.	73	74	75	92	77	78	62	80	81	82	83	8	85	98	87	88	68	06	91	92	93	94	92	96	26	86	66	100	101	102	103
	method	3003	(Fig 4)	я	я	з	3	я	3	я	я	я	я	я	n	я	я	3	3	3	3	=	-	3	n	я	я	я	я	я	3	n
	Symbol S	tPHL1		n	tpLH1	3	3	tPHL2	"	"	tpLH2	*	*	tPHL3	tPLH3	tPHL4	tPLH4	tPHL5	3	"	3	tPHL5	3	3	7	tPLH5	7	3	7	"	3	"
	Subgroup Symbol STD-883 method	6	T _C = 25°C	3	3	3	3	3	n	3	3	n	n	3	ä	3	n	3	3	n	3	=	=	3	ä	3	я	ä	ä	3	3	3

See notes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

J	Cases E, F	-	2	3	4	2	4 5 6 7 8 9 10 11 12 13 1	7	8	6	10	11	12	13	14	15	16			Test	Test limits
Tes	Test No.	D3	D2	٥	D0	>	>	ტ	GND	O	В	∢	D7	D ₆	D ₅	D4	V _{CC}		Meas. terminal	in Max	×
_	105				Z	OUT		GND	GND	GND	GND	GND					5.0 V	1		3 29	Su (
`	106			Z		3		3	3	3	GND	5.0 V					3	<u></u>		3	3
_	107		Z			3		3	3	3	5.0 V	GND					2	D ₂ .	D ₂ to Y	-	3
	108	Z				3		3	3	3	5.0 V	5.0 V					3	D3	D ₃ to Y		3
	109					3		3	3	5.0 V	GND	GND				Z	3	D4	D ₄ to Y		3
	110					3		3	n	3	GND	5.0 V			Z		3	D ₂	D ₅ to Y		3
	111					3		3	7	3	5.0 V	GND		Z			3	De	De to Y	-	3
	112					3		3	n	3	5.0 V	5.0 V	Z				3	D ₂	D ₇ to Y		3
	113				Z	n		n	n	GND	GND	GND					n	D0	Do to Y	33	
	114			Z		3		3	n	3	GND	5.0 V					3	2	D ₁ to Y	3	3
	115		Z			3		3	3	3	5.0 V	GND					3	D ₂	D ₂ to Y		3
	116	Z				3		3	3	3	5.0 V	5.0 V				Z	3	۵	D ₃ to Y		3
	117					3		3	3	5.0 V	GND	GND			Z		3	D4	D ₄ to Y		3
	118					3		3	3	3	GND	5.0 V					3	De	D ₅ to Y		3
	119					3		3	ı	3	5.0 V	GND		Z			3	De	De to Y		3
	120					3		з	3	3	5.0 V	5.0 V	Z				3	D2	D ₇ to Y		3
	121			5.0 V	GND		OUT	я	n	GND	GND	Z					n	A to	A to W	48	
	122		5.0 V		3		"	3	n	GND	Z	GND					3	B tc	" ×	-	3
	123				з		я	3	n	z	GND	GND				5.0 V	"	Ö	C to W	3	3
	124			5.0 V	"		n	n	n	GND	GND	Z					n	A to	A to W	43	
	125		5.0 V		3		7	3	3	GND	Z	GND					3	B tc	" M		3
	126				и		п	и	п	Z	GND	GND				5.0 V	, "	Ct	C to W	ı,	n
1	127			5.0 V	n	OUT		n	n	GND	GND	Z					n	Αt		8 60	, (
	128		5.0 V		3	3		3	3	GND	Z	GND					3	Bţ			3
	129				u	n		п	n	Z	GND	GND				5.0 V	, a	Ct	C to Y	n n	n
	130			5.0 V	"	n		n	n	GND	GND	Z					n	Αt	A to Y	, 28	
	131		5.0 V		3	3		3	3	GND	Z	GND					2	Bţ		3	3
	132				3	3		3	3	Z	GND	ı				5.0 V	"	ct	C to Y	"	3
Ī	133				5.0 V		OUT	Z	n	GND	n	n					n	G to		98	
	134				n		OUT	и	n	а	n	α					n	G te	G to W 6	35	, .
Ī	135				n	OUT		n	n	n	n	n					n	G t		8 5	,
	136				3	OUT		3	3	3	3	3					3	Gt	G to Y		3
	137				Z		OUT	GND	n	3	n	я					n	D ₀ t		3 32	"
	138			Z			3	3	3	3	n	5.0 V					3	<u>D</u>			3
	139		Z				я	3	3	3	5.0 V	GND					3	D ₂ t	D ₂ to W	-	3
	140	Z					'n	n	n	ä	5.0 V	5.0 V					3	ć	" >>	3	3

See notes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open).

iits	Unit	us	3	3	3	n	3	3	3	3	3	3	3	n	3	3	3	3	3	3	3	n	3	3	3	3	3	3	3
Test limits	Max	32	3	3	3	56	3	3	3	3	3	3	3	44	3	3	я	3	3	3	3	36	3	3	3	3	3	3	3
	Min	က	3	3	3	я	3	3	3	3	3	3	3	9	3	3	3	3	3	3	3	n	3	3	3	3	3	3	3
0	meas. terminal	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W	D ₀ to W	D ₁ to W	D ₂ to W	D ₃ to W	D ₄ to W	D ₅ to W	D ₆ to W	D ₇ to W	D ₀ to Y	D ₁ to Y	D ₂ to Y	D ₃ to Y	D ₄ to Y	D ₅ to Y	D ₆ to Y	D ₇ to Y	D ₀ to Y	D ₁ to Y	D ₂ to Y	D ₃ to Y	D ₄ to Y	D ₅ to Y	D ₆ to Y	D ₇ to Y
16	Vcc	5.0 V		"	я	n	3	3	7	"	"	"	"	n	"	"	"	3	7	"	3	n	n	3	"	"	3	n	3
15	D4	Z								Z							Z									Z			
14	Ds		Z								Z								Z								z		
13	De			z								z								Z								Z	
12	D ₇				Z								z								Z								Z
7	∢	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V	GND	5.0 V
10		GND						5.0 V	5.0 V	GND	GND			_			5.0 V	GND	GND			-						5.0 V	5.0 V
6	ပ	5.0 V		n				3	n	5.0 V	3	3		_		n	n	5.0 V	n			GND		n	n	5.0 V	n	n	3
œ	GND	GND	3	"	3	n	3	3	3	"	3	3	3	n	n	n	3	3	"	n	3	n	n	3	3	n	3	n	з
7	O	GND	n	"	я	n	3	3	"	"	3	3	"	n	n	n	n	3	"	n	3	n	n	3	n	n	3	n	3
9	>	OUT	3	3	n	я	3	3	3	3	3	3	3																
2	>													OUT	n	n	n	3	ä	n	n	n	n	n	n	n	ä	n	3
4	۵					Z								Z								Z							
က	7						z								z								z						
2	D2							Z								Z								Z					
-	D3								Z								Z								Z				
Cases E, F	Test No.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168
MIL-	method	3003	(Fig 4)	я	я	я	а	3	а	а	3	3	я	п	я	я	2	3	а	я	я	n	я	ä	я	я	я	я	3
MIL-		tPHL5	n	n	n	фгн5	¥	3	n	n	3	3	n	tPHL6	n	n	3	3	n	n	n	фГН	n	n	n	n	n	n	3
210000	dnoifianc	10	T _C = 125°C	3	n	¥	3	3	n	n	3	3	n	3	n	n	я	3	n	n	n	3	я	3	n	n	n	я	3

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it not mandatory)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirement for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for carriers, special lead lengths or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
- 6.4 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

MIL-M-38510/14E

6.5 <u>Abbreviations, symbols and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
V _{IN}	Voltage level at an input terminal
V _{IC}	
I _{IN}	Current-flowing into an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer lead lengths and lead forming shall not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54150
02	9312
03	54153
04	9309
05	9322, 54157
06	54151

6.8 <u>Manufacturers designation.</u> Manufacturer circuits included in this specification are designated as shown in table IV herein.

TABLE IV. Substitutability and manufacturers designator.

Device Types	Motorola	Signetics	Fairchild	Texas Instruments	National	Advanced Micro Device
	Α	В	С	D	Е	F
01 02 03 04 05 06	X X X X X	X X X X X	X X X	X X	X X X X	x x

MIL-M-38510/14E

6.9 <u>Changes from previous issue.</u> Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:

Army - CR Navy - EC Air Force - 11

DLA - CC

Preparing activity: DLA - CC

(Project 5962-2103)

Review activities:

Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.